This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Related tags

Deep LearningDsCML
Overview

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation

This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

1. Paper

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation
IEEE International Conference on Computer Vision (ICCV 2021)

If you find it helpful to your research, please cite as follows:

@inproceedings{peng2021sparse,
  title={Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation},
  author={Peng, Duo and Lei, Yinjie and Li, Wen and Zhang, Pingping and Guo, Yulan},
  booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
  year={2021},
  publisher={IEEE}
}

2. Preparation

You can follow the next steps to install the requairmented environment. This code is mainly modified from xMUDA, you can also refer to its README if the installation isn't going well.

2.1 Setup a Conda environment:

First, you are recommended to create a new Conda environment named nuscenes.

conda create --name nuscenes python=3.7

You can enable the virtual environment using:

conda activate nuscenes 

To deactivate the virtual environment, use:

source deactivate

2.2 Install nuscenes-devkit:

Download the devkit to your computer, decompress and enter it.

Add the python-sdk directory to your PYTHONPATH environmental variable, by adding the following to your ~/.bashrc:

export PYTHONPATH="${PYTHONPATH}:$HOME/nuscenes-devkit/python-sdk"

Using cmd (make sure the environment "nuscenes" is activated) to install the base environment:

pip install -r setup/requirements.txt

Setup environment variable:

export NUSCENES="/data/sets/nuscenes"

Using the cmd to finally install it:

pip install nuscenes-devkit

After the above steps, the devikit is installed, for any question you can refer to devikit_installation_help

If you meet the error with "pycocotools", you can try following steps:

(1) Install Cython in your environment:

sudo apt-get installl Cython
pip install cython

(2) Download the cocoapi to your computer, decompress and enter it.

(3) Using cmd to enter the path under "PythonAPI", type:

make

(4) Type:

pip install pycocotools

2.3 Install SparseConveNet:

Download the SparseConveNet to your computer, decompress, enter and develop it:

cd SparseConvNet/
bash develop.sh

3. Datasets Preparation

For Dataset preprocessing, the code and steps are highly borrowed from xMUDA, you can see more preprocessing details from this Link. We summarize the preprocessing as follows:

3.1 NuScenes

Download Nuscenes from NuScenes website and extract it.

Before training, you need to perform preprocessing to generate the data first. Please edit the script DsCML/data/nuscenes/preprocess.py as follows and then run it.

root_dir should point to the root directory of the NuScenes dataset

out_dir should point to the desired output directory to store the pickle files

3.2 A2D2

Download the A2D2 Semantic Segmentation dataset and Sensor Configuration from the Audi website

Similar to NuScenes preprocessing, please save all points that project into the front camera image as well as the segmentation labels to a pickle file.

Please edit the script DsCML/data/a2d2/preprocess.py as follows and then run it.

root_dir should point to the root directory of the A2D2 dataset

out_dir should point to the desired output directory to store the undistorted images and pickle files.

It should be set differently than the root_dir to prevent overwriting of images.

3.3 SemanticKITTI

Download the files from the SemanticKITTI website and additionally the color data from the Kitti Odometry website. Extract everything into the same folder.

Please edit the script DsCML/data/semantic_kitti/preprocess.py as follows and then run it.

root_dir should point to the root directory of the SemanticKITTI dataset out_dir should point to the desired output directory to store the pickle files

4. Usage

You can training the DsCML by using cmd or IDE such as Pycharm.

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/day_night/xmuda.yaml

The output will be written to /home/<user>/workspace by default. You can change the path OUTPUT_DIR in the config file in (e.g. configs/nuscenes/day_night/xmuda.yaml)

You can start the trainings on the other UDA scenarios (USA/Singapore and A2D2/SemanticKITTI):

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/usa_singapore/xmuda.yaml
python DsCML/train_DsCML.py --cfg=../configs/a2d2_semantic_kitti/xmuda.yaml

5. Results

We present several qualitative results reported in our paper.

Update Status

The code of CMAL is updated. (2021-10-04)

The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022