Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Related tags

Deep LearningWorktory
Overview

Welcome to Worktory's documentation!

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

As the network automation ecosystem grows, several connection plugins and parsers are available, and several times choosing a library or a connection plugin restricts all the devices to the same connection method.

Worktory tries to solve that problem giving the developer total flexibility for choosing the connector plugin and parsers for each device, at the same time that exposes a single interface for every plugin.

Installing

Worktory is available in PyPI, to install run:

$ pip install worktory

Using worktory

Sample Inventory

devices = [
            {
            'name': 'sandbox-iosxr-1',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'async',
            'transport': 'asyncssh',
            },
            {
            'name': 'sandbox-nxos-1',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'cisco_nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['CORE'],
            'select_parsers' : 'ntc',
            'connection_manager': 'scrapli',
            'mode': 'async',
            'transport': 'asyncssh'
            },
            {
            'name': 'sandbox-nxos-2',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['EDGE'],
            'connection_manager': 'unicon',
            'mode': 'sync',
            'transport': 'ssh',
            'GRACEFUL_DISCONNECT_WAIT_SEC': 0,
            'POST_DISCONNECT_WAIT_SEC': 0,
            },
            {
            'name': 'sandbox-iosxr-2',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'sync',
            },
        ]

Collecting Running config from async devices

from worktory import InventoryManager
import asyncio
inventory = InventoryManager(devices)

device_configs = {}
async def get_config(device):
    await device.connect()
    config = await device.execute("show running-config")
    device_configs[device.name] = config
    await device.disconnect()

async def async_main():
    coros = [get_config(device) for device in inventory.filter(mode='async')]
    await asyncio.gather(*coros)

loop = asyncio.get_event_loop()
loop.run_until_complete(async_main())

Collecting Running config from sync devices

from worktory import InventoryManager
from multiprocessing import Pool
inventory = InventoryManager(devices)

def get_config(device_name):
    inventory = InventoryManager(devices)
    device = inventory.devices[device_name]
    device.connect()
    config = device.execute("show running-config")
    device.disconnect()
    return ( device.name , config )

def main():
    devs = [device.name for device in inventory.filter(mode='sync')]
    with Pool(2) as p:
        return p.map(get_config, devs)


output = main()
Owner
Renato Almeida de Oliveira
I'm a telecommunications Engineer, with experience on network engineering
Renato Almeida de Oliveira
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022