Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Related tags

Deep LearningWorktory
Overview

Welcome to Worktory's documentation!

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

As the network automation ecosystem grows, several connection plugins and parsers are available, and several times choosing a library or a connection plugin restricts all the devices to the same connection method.

Worktory tries to solve that problem giving the developer total flexibility for choosing the connector plugin and parsers for each device, at the same time that exposes a single interface for every plugin.

Installing

Worktory is available in PyPI, to install run:

$ pip install worktory

Using worktory

Sample Inventory

devices = [
            {
            'name': 'sandbox-iosxr-1',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'async',
            'transport': 'asyncssh',
            },
            {
            'name': 'sandbox-nxos-1',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'cisco_nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['CORE'],
            'select_parsers' : 'ntc',
            'connection_manager': 'scrapli',
            'mode': 'async',
            'transport': 'asyncssh'
            },
            {
            'name': 'sandbox-nxos-2',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['EDGE'],
            'connection_manager': 'unicon',
            'mode': 'sync',
            'transport': 'ssh',
            'GRACEFUL_DISCONNECT_WAIT_SEC': 0,
            'POST_DISCONNECT_WAIT_SEC': 0,
            },
            {
            'name': 'sandbox-iosxr-2',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'sync',
            },
        ]

Collecting Running config from async devices

from worktory import InventoryManager
import asyncio
inventory = InventoryManager(devices)

device_configs = {}
async def get_config(device):
    await device.connect()
    config = await device.execute("show running-config")
    device_configs[device.name] = config
    await device.disconnect()

async def async_main():
    coros = [get_config(device) for device in inventory.filter(mode='async')]
    await asyncio.gather(*coros)

loop = asyncio.get_event_loop()
loop.run_until_complete(async_main())

Collecting Running config from sync devices

from worktory import InventoryManager
from multiprocessing import Pool
inventory = InventoryManager(devices)

def get_config(device_name):
    inventory = InventoryManager(devices)
    device = inventory.devices[device_name]
    device.connect()
    config = device.execute("show running-config")
    device.disconnect()
    return ( device.name , config )

def main():
    devs = [device.name for device in inventory.filter(mode='sync')]
    with Pool(2) as p:
        return p.map(get_config, devs)


output = main()
Owner
Renato Almeida de Oliveira
I'm a telecommunications Engineer, with experience on network engineering
Renato Almeida de Oliveira
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022