Code, final versions, and information on the Sparkfun Graphical Datasheets

Overview

Graphical Datasheets

Code, final versions, and information on the SparkFun Graphical Datasheets.

Generated Cells Completed Graphical Datasheet
Generated Cells After Running Script Example Completed Graphical Datasheet

This repo includes the Python script used to help generate the graphical datasheets. It also includes the final .svg, and .pdf files as well as the .csv files use for development boards. The .csv files were used as a starting point and some text did change between the file and the final version. There is also a User Submitted folder for external contributions.

Setting Up and Running the Script via Notepad++

One method is to use Notepad++ to edit and a plug-in to run the script. Download and install Notepadd++ v7.7.1 on your computer. From Notepad++'s Plugins > Plugins Admin... menu, search for PyNPP plug-in and install. We used PyNPP v1.0.0. You may need to search online, download the plug-in, and manually install on Notepad++ from the Settings > Import > Import plug-in(s)... menu. This plug-in is optional if you want to run the script from Notepad++.

We'll assume that you have Python 2.7 installed. If you have not already, open up the command prompt. To check the version of Python, type the following to see if you are using Python 2 or Python 3. If you do not see Python 2, you will need to adjust your environment variables [i.e. System Properties > Environment Variables..., then System Variables > Path > Edit..., and add the location of your installed Python (in this case it was C:\Python27) to a field] to be able to use that specific version.

python --version

To manually install, download and unzip the svgwrite module (v1.2.0). In a command line, change the path to where ...\svgwrite folder is located and use the following command to install.

python setup.py install

Create a CSV of the pinout for your development board. You can also edit the CSV from any of the examples. For simplicity, copy the Pro Mini's file (...Graphical_Datasheets\Datasheets\ProMini\ProMini.csv ) and paste it in the same folder as the python script (...\Graphical_Datasheets). Open one of the tagscript.py scripts in Notepad++ and run the script from the menu: Plugins > PyNPP > Run File in Python.

A window will pop up requesting for the CSV file name. Enter the file name (like ProMini), it will output the SVG with the same name.

After running the script, open the SVG file in Inkscape (or Illustrator) with an image of your development board to align or adjust the pinouts! Feel free to adjust the script to format your cells based on your personal preferences. Have fun!

Setting Up and Running the Script via Command Line

You can use any text editor to edit the script. The following instructions do not require PyNPP. Additionally, it is an alternative method to install the svgwrite module and run the Python script via command line.

Again, we'll assume that you have Python 2.7 installed. If you have not already, open up the command prompt. To check the version of Python, type the following to see if you are using Python 2 or Python 3. If you do not see Python 2, you will need to adjust your environment variables [i.e. System Properties > Environment Variables..., then System Variables > Path > Edit..., and add the location of your installed Python (in this case it was C:\Python27) to a field] to be able to use that specific version.

python --version

Open a command prompt and use the following command to install the older version of svgwrite.

python -m pip install svgwrite==1.2.1

Create a CSV of the pinout for your development board. You can also edit the CSV from any of the examples. For simplicity, copy the Pro Mini's file (...Graphical_Datasheets\Datasheets\ProMini\ProMini.csv ) and paste it in the same folder as the python script (...\Graphical_Datasheets). Use the following command to execute the script.

python tagscript.py

A window will pop up requesting for the CSV file name. Enter the file name (like ProMini), it will output the SVG with the same name.

After running the script, open the SVG file in Inkscape (or Illustrator) with an image of your development board to align or adjust the pinouts! Feel free to adjust the script to format your cells based on your personal preferences. Have fun!

Required Software

Some software used to create graphical datasheets. At the time of writing, Python 2 was used to generate the cells. Note that support Python 2 has ended but the tools should still work if you are using archived versions of the plug-in and module. You may need to adjust the script to work with the latest NotePad++, NyPP plug-in, Python 3, and svgwrite versions.

  • Notepad++ v7.7.1 - Text editor to modify the Python script
    • PyNPP v1.0.0 - Optional plug-in to run Python Scripts
  • Python v2.7.13
    • svgwrite v1.2.0 - The script uses this version of svgwrite which is compatible with Python 2
  • Inkscape v0.92.4

Repository Contents

  • /Datasheets - CSV of pinouts and graphical datasheets for development boards
  • tagscript.py - Script to generate cells for graphical datasheets
  • tagscript_original-mshorter.py - Original script to individually modify each column attribute if necessary

Documentation

Owner
SparkFun Electronics
Building opensource widgets to make prototyping hardware easier since 2002.
SparkFun Electronics
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022