From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Overview

From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement. A deep recursive band network (DRBN) is proposed to recover a linear band representation of an enhanced normal-light image with paired low/normal-light images, and then obtain an improved one by recomposing the given bands via another learnable linear transformation based on a perceptual quality-driven adversarial learning with unpaired data. The architecture is powerful and flexible to have the merit of training with both paired and unpaired data. On one hand, the proposed network is well designed to extract a series of coarse-to-fine band representations, whose estimations are mutually beneficial in a recursive process. On the other hand, the extracted band representation of the enhanced image in the first stage of DRBN (recursive band learning) bridges the gap between the restoration knowledge of paired data and the perceptual quality preference to real high-quality images. Its second stage (band recomposition) learns to recompose the band representation towards fitting perceptual properties of highquality images via adversarial learning. With the help of this two-stage design, our approach generates the enhanced results with well reconstructed details and visually promising contrast and color distributions. Extensive evaluations demonstrate the superiority of our DRBN.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Wang, Shiqi and Fang, Yuming and Wang, Yue and Liu, Jiaying},
title = {From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation:

  1. Clone this repo
  2. Install PyTorch and dependencies from http://pytorch.org
  3. For stage II training, you need to download [VGG16 Model] and put it in DRBL-stage2/src/.
  4. For testing, you can directly run test.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  5. For training, you can directly run train.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  6. You can download our dataset here: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]

Note: the code is suitable for PyTorch 0.4.1)

Detailed Guidance:

Thank you for your attention!

  1. How could I reproduce the objective evaluation results in Table I in the paper?
    You can run sh ./DRBL-stage1/src/test.sh
    The 1st stage offers better objective results while the other produces better overall subjective visual quality. In our paper, the methods involved in objective comparisons are not trained with adversarial/quality losses.

  2. Data structure You can see src\data\lowlight.py and src\data\lowlighttest.py for those details in the code of each stage.

    In the 1st stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.

    In the 2nd stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.
    lrr --> low-light images in the real applications, hq --> high quality dataset

  3. Dataset You can obtain the dataset via: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]
    We introduce these collections here:
    a) Our_low: real captured low-light images in LOL for training;
    b) Our_normal: real captured normal-light images in LOL for training;
    c) Our_low_test: real captured low-light images in LOL for testing;
    d) Our_normal_test: real captured normal-light images in LOL for testing;
    e) AVA_good_2: the high-quality images selected from the AVA dataset based on the MOS values;
    f) Low_real_test_2_rs: real low-light images selected from LIME, NPE, VV, DICM, the typical unpaired low-light testing datasets;
    g) Low_degraded: synthetic low-light images in LOL for training;
    h) Normal: synthetic normal-light images in LOL for training;

  4. Image number in LOL
    LOL: Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. "Deep Retinex Decomposition for Low-Light Enhancement", BMVC, 2018. [Baiduyun (extracted code: sdd0)] [Google Drive]
    LOL-v2 (the extension work): Wenhan Yang, Haofeng Huang, Wenjing Wang, Shiqi Wang, and Jiaying Liu. "Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement", TIP, 2021. [Baiduyun (extracted code: l9xm)] [Google Drive]

    We use LOL-v2 as it is larger and more diverse. In fact, it is quite unexpected that the work of LOL-v2 is published later than this, which might also bother followers.

    I think you can choose which one to follow freely.

  5. Pytorch version
    Only 0.4 and 0.41 currently.
    If you have to use more advanced versions, which might be constrained to the GPU device types, you might access Wang Hong's github for the idea to replace parts of the dataloader: [New Dataloader]

  6. Why does stage 2 have two branches?
    The distributions of LOL and LIME, NPE, VV, DICM are quite different.
    We empirically found that it will lead to better performance if two models and the corresponding training data are adopted.

Contact

If you have questions, you can contact [email protected]. A timely response is promised, if the email is sent by your affliaton email with your signed name.

Owner
Yang Wenhan
Yang Wenhan
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022