KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Overview

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems

License: MIT

This is the implementation of the paper:

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems. Andrea Madotto, Samuel Cahyawijaya, Genta Indra Winata, Yan Xu, Zihan Liu, Zhaojiang Lin, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{madotto2020learning,
  title={Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems},
  author={Madotto, Andrea and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Yan and Liu, Zihan and Lin, Zhaojiang and Fung, Pascale},
  journal={arXiv preprint arXiv:2009.13656},
  year={2020}
}

Abstract

Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via finetuning. We evaluate our solution in five taskoriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.

Knowledge-embedded Dialogue:

During training, the KE dialogues are generated by fulfilling the *TEMPLATE* with the *user goal query* results, and they are used to embed the KB into the model parameter theta. At testing time, the model does not use any external knowledge to generate the correct responses.

Dependencies

We listed our dependencies on requirements.txt, you can install the dependencies by running

❱❱❱ pip install -r requirements.txt

In addition, our code also includes fp16 support with apex. You can find the package from https://github.com/NVIDIA/apex.

Experiments

bAbI-5

Dataset Download the preprocessed dataset and put the zip file inside the ./knowledge_embed/babi5 folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/babi5
❱❱❱ unzip dialog-bAbI-tasks.zip

Generate the delexicalized dialogues from bAbI-5 dataset via

❱❱❱ python3 generate_delexicalization_babi.py

Generate the lexicalized data from bAbI-5 dataset via

❱❱❱ python generate_dialogues_babi5.py --dialogue_path ./dialog-bAbI-tasks/dialog-babi-task5trn_record-delex.txt --knowledge_path ./dialog-bAbI-tasks/dialog-babi-kb-all.txt --output_folder ./dialog-bAbI-tasks --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 558 (recommended) and <num_augmented_dialogues> is 264 as it is corresponds to the number of knowledge and number of dialogues in bAbI-5 dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on bAbI training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/babi5
❱❱❱ python main.py --model_checkpoint gpt2 --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks

Scoring bAbI-5 To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_BABI5.py --model_checkpoint <model_checkpoint> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --kbpercentage 0

CamRest

Dataset

Download the preprocessed dataset and put the zip file under ./knowledge_embed/camrest folder. Unzip the zip file by executing

❱❱❱ cd ./knowledge_embed/camrest
❱❱❱ unzip CamRest.zip

Generate the delexicalized dialogues from CamRest dataset via

❱❱❱ python3 generate_delexicalization_CAMREST.py

Generate the lexicalized data from CamRest dataset via

❱❱❱ python generate_dialogues_CAMREST.py --dialogue_path ./CamRest/train_record-delex.txt --knowledge_path ./CamRest/KB.json --output_folder ./CamRest --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 201 (recommended) and <num_augmented_dialogues> is 156 quite huge as it is corresponds to the number of knowledge and number of dialogues in CamRest dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on CamRest training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/camrest/
❱❱❱ python main.py --model_checkpoint gpt2 --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest

Scoring CamRest To run the scorer for bAbI 5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_CAMREST.py --model_checkpoint <model_checkpoint> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --kbpercentage 0

SMD

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/smd folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ unzip SMD.zip

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on SMD training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ mkdir ./runs
❱❱❱ unzip ./knowledge_embed/smd/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/smd
❱❱❱ python main.py --dataset SMD --lr 6.25e-05 --n_epochs 10 --kbpercentage 0 --layers 12

Prepare Knowledge-embedded dialogues

Firstly, we need to build databases for SQL query.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ python generate_dialogues_SMD.py --build_db --split test

Then we generate dialogues based on pre-designed templates by domains. The following command enables you to generate dialogues in weather domain. Please replace weather with navigate or schedule in dialogue_path and domain arguments if you want to generate dialogues in the other two domains. You can also change number of templates used in relexicalization process by changing the argument num_augmented_dialogue.

❱❱❱ python generate_dialogues_SMD.py --split test --dialogue_path ./templates/weather_template.txt --domain weather --num_augmented_dialogue 100 --output_folder ./SMD/test

Adapt fine-tuned GPT-2 model to the test set

❱❱❱ python evaluate_finetune.py --dataset SMD --model_checkpoint runs/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12 --top_k 1 --eval_indices 0,303 --filter_domain ""

You can also speed up the finetuning process by running experiments parallelly. Please modify the GPU setting in #L14 of the code.

❱❱❱ python runner_expe_SMD.py 

MWOZ (2.1)

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/mwoz folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ unzip mwoz.zip

Prepare Knowledge-Embedded dialogues (You can skip this step, if you have downloaded the zip file above)

You can prepare the datasets by running

❱❱❱ bash generate_MWOZ_all_data.sh

The shell script generates the delexicalized dialogues from MWOZ dataset by calling

❱❱❱ python generate_delex_MWOZ_ATTRACTION.py
❱❱❱ python generate_delex_MWOZ_HOTEL.py
❱❱❱ python generate_delex_MWOZ_RESTAURANT.py
❱❱❱ python generate_delex_MWOZ_TRAIN.py
❱❱❱ python generate_redelex_augmented_MWOZ.py
❱❱❱ python generate_MWOZ_dataset.py

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on MWOZ training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ mkdir ./runs
❱❱❱ unzip ./mwoz.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/mwoz
❱❱❱ python main.py --model_checkpoint gpt2 --dataset MWOZ_SINGLE --max_history 50 --train_batch_size 6 --kbpercentage 100 --fp16 O2 --gradient_accumulation_steps 3 --balance_sampler --n_epochs 10

OpenDialKG

Getting Started We use neo4j community server edition and apoc library for processing graph data. apoc is used to parallelize the query in neo4j, so that we can process large scale graph faster

Before proceed to the dataset section, you need to ensure that you have neo4j (https://neo4j.com/download-center/#community) and apoc (https://neo4j.com/developer/neo4j-apoc/) installed on your system.

If you are not familiar with CYPHER and apoc syntaxes, you can follow the tutorial in https://neo4j.com/developer/cypher/ and https://neo4j.com/blog/intro-user-defined-procedures-apoc/

Dataset Download the original dataset and put the zip file inside the ./knowledge_embed/opendialkg folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/opendialkg
❱❱❱ unzip https://drive.google.com/file/d/1llH4-4-h39sALnkXmGR8R6090xotE0PE/view?usp=sharing.zip

Generate the delexicalized dialogues from opendialkg dataset via (WARNING: this requires around 12 hours to run)

❱❱❱ python3 generate_delexicalization_DIALKG.py

This script will produce ./opendialkg/dialogkg_train_meta.pt which will be use to generate the lexicalized dialogue. You can then generate the lexicalized dialogue from opendialkg dataset via

❱❱❱ python generate_dialogues_DIALKG.py --random_seed <random_seed> --batch_size 100 --max_iteration <max_iter> --stop_count <stop_count> --connection_string bolt://localhost:7687

This script will produce samples of dialogues at most batch_size * max_iter samples, but in every batch there is a possibility where there is no valid candidate and resulting in less samples. The number of generation is limited by another factor called stop_count which will stop the generation if the number of generated samples is more than equal the specified stop_count. The file will produce 4 files: ./opendialkg/db_count_records_{random_seed}.csv, ./opendialkg/used_count_records_{random_seed}.csv, and ./opendialkg/generation_iteration_{random_seed}.csv which are used for checking the distribution shift of the count in the DB; and ./opendialkg/generated_dialogue_bs100_rs{random_seed}.json which contains the generated samples.

Notes:

  • You might need to change the neo4j password inside generate_delexicalization_DIALKG.py and generate_dialogues_DIALKG.py manually.
  • Because there is a ton of possibility of connection in dialkg, we use sampling method to generate the data, so random seed is crucial if you want to have reproducible result

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on opendialkg training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/opendialkg
❱❱❱ python main.py --dataset_path ../../knowledge_embed/opendialkg/opendialkg --model_checkpoint gpt2 --dataset DIALKG --n_epochs 50 --kbpercentage <random_seed> --train_batch_size 8 --valid_batch_size 8

Notes that the value of --kbpercentage is equal to <random_seed> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py  --model_checkpoint <model_checkpoint_folder> --dataset DIALKG --dataset_path  ../../knowledge_embed/opendialkg/opendialkg

Scoring OpenDialKG To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_DIALKG5.py --model_checkpoint <model_checkpoint> --dataset DIALKG  ../../knowledge_embed/opendialkg/opendialkg --kbpercentage 0

Further Details

For the details regarding to the experiments, hyperparameters, and Evaluation results you can find it in the main paper of and suplementary materials of our work.

Owner
CAiRE
CAiRE
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022