A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Overview

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset from nebula-shareholding-example.

corp-rel-capture.mov

Quick Start

First, please setup a Nebula Graph Cluster with data loaded from nebula-shareholding-example.

Then, clone this project:

git clone https://github.com/wey-gu/nebula-corp-rel-search.git
cd nebula-corp-rel-search

Start the backend:

python3 -m pip install -r requirements.txt
cd corp-rel-backend
export NG_ENDPOINTS="192.168.123.456:9669" # This should be your Nebula Graph Cluster GraphD Endpoint
python3 app.py

Start the frontend in another terminal:

npm install -g @vue/cli
cd nebula-corp-rel-search/corp-rel-frontend
vue serve src/main.js

Start a reverse Proxy to enable Corp-Rel Backend being served with same origin of Frontend:

For example below is a Nginx config to make :8081/ go to http://localhost:8080 and :8081/api go to http://192.168.123.456:5000/api.

http {
    include       mime.types;
    default_type  application/octet-stream;

    keepalive_timeout  65;

    server {
        listen       8081;
        server_name  localhost;
        # frontend
        location / {
            proxy_pass http://localhost:8080;
        }
        # backend
        location /api {
            proxy_pass http://192.168.123.456:5000/api;
        }
    }
#...

After above reverse proxy being configured, let's verify it via cURL:

curl --header "Content-Type: application/json" \
     --request POST \
     --data '{"entity": "c_132"}' \
     http://localhost:8081/api | jq

If it's properly responded, hen we could go to http://localhost:8081 from the web browser :).

Design Log

data from Backend Side

Backend should query node's relationship path as follow:

MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
WHERE id(v) IN ["c_132"] RETURN p LIMIT 100

An example of the query will be like this:

([email protected]) [shareholding]> MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
                           -> WHERE id(v) IN ["c_132"] RETURN p LIMIT 100
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| p                                                                                                                                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 0.0}]-("c_245" :corp{name: "Thompson-King"})>                                                                                                                             |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 3.0}]-("p_1039" :person{name: "Christian Miller"})>                                                                                                                       |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 3.0}]-("p_1399" :person{name: "Sharon Gonzalez"})>                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 9.0}]-("p_1767" :person{name: "Dr. David Vance"})>                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 11.0}]-("p_1997" :person{name: "Glenn Reed"})>                                                                                                                            |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 14.0}]-("p_2341" :person{name: "Jessica Baker"})>                                                                                                                         |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
...

Leveraging nebula2-python, we could have result in below data structure:

$ python3 -m pip install nebula2-python==2.5.0
$ ipython
In [1]: from nebula2.gclient.net import ConnectionPool
In [2]: from nebula2.Config import Config
In [3]: config = Config()
   ...: config.max_connection_pool_size = 10
   ...: # init connection pool
   ...: connection_pool = ConnectionPool()
   ...: # if the given servers are ok, return true, else return false
   ...: ok = connection_pool.init([('192.168.8.137', 9669)], config)
   ...: session = connection_pool.get_session('root', 'nebula')
[2021-10-13 13:44:24,242]:Get connection to ('192.168.8.137', 9669)

In [4]: resp = session.execute("use shareholding")
In [5]: query = '''
   ...: MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
   ...: WHERE id(v) IN ["c_132"] RETURN p LIMIT 100
   ...: '''
In [6]: resp = session.execute(query) # Note: after nebula graph 2.6.0, we could use execute_json as well

In [7]: resp.col_size()
Out[7]: 1

In [9]: resp.row_size()
Out[10]: 100

As we know the result is actually a nebula-python path type, they could be extracted as follow with .nodes() and .relationships():

In [11]: p=resp.row_values(22)[0].as_path()

In [12]: p.nodes()
Out[12]:
[("c_132" :corp{name: "Chambers LLC"}),
 ("p_4000" :person{name: "Colton Bailey"})]

In [13]: p.relationships()
Out[13]: [("p_4000")-[:role_as@0{role: "Editorial assistant"}]->("c_132")]

For relationships/edges, we could call its .edge_name(), .properties(), .start_vertex_id(), .end_vertex_id():

In [14]: rel=p.relationships()[0]

In [15]: rel
Out[15]: ("p_4000")-[:role_as@0{role: "Editorial assistant"}]->("c_132")

In [16]: rel.edge_name()
Out[16]: 'role_as'

In [17]: rel.properties()
Out[17]: {'role': "Editorial assistant"}

In [18]: rel.start_vertex_id()
Out[18]: "p_4000"

In [19]: rel.end_vertex_id()
Out[19]: "c_132"

And for nodes/vertices, we could call its .tags(), properties, get_id():

In [20]: node=p.nodes()[0]

In [21]: node.tags()
Out[21]: ['corp']

In [22]: node.properties('corp')
Out[22]: {'name': "Chambers LLC"}

In [23]: node.get_id()
Out[23]: "c_132"

Data visualization

For the frontend, we could create a view by leveraging vue-network-d3:

npm install vue-network-d3 --save
touch src/App.vue
touch src/main.js

In src/App.vue, we create a Network instance and fill in the nodeList, and linkList fetched from backend, in below example, we put fake data as:

nodes: [
        {"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
        {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}],
relationships: [
        {"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"}]

And the full example of src/App.vue will be:

<template>
  <div id="app">
    <network
      :nodeList="nodes"
      :linkList="relationships"
      :nodeSize="nodeSize"
      :linkWidth="linkWidth"
      :linkDistance="linkDistance"
      :linkTextFrontSize="linkTextFrontSize"
      :nodeTypeKey="nodeTypeKey"
      :linkTypeKey="linkTypeKey"
      :nodeTextKey="nodeTextKey"
      :linkTextKey="linkTextKey"
      :showNodeText="showNodeText"
      :showLinkText="showLinkText"
      >
    </network>
  </div>
</template>

<script>
import Network from "vue-network-d3";

export default {
  name: "app",
  components: {
    Network
  },
  data() {
    return {
      nodes: [
        {"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
        {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}
      ],
      relationships: [
        {"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"}
      ],
      nodeSize: 18,
      linkDistance: 120,
      linkWidth: 6,
      linkTextFrontSize: 20,
      nodeTypeKey: "tag",
      linkTypeKey: "edge",
      nodeTextKey: "name",
      linkTextKey: "properties",
      showNodeText: true,
      showLinkText: true
    };
  },
};
</script>

<style>
body {
  margin: 0;
}
</style>

Together with src/main.js:

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

new Vue({
  render: h => h(App),
}).$mount('#app')

Then we could run: vue serve src/main.js to have this renderred:

vue-network-d3-demo

The data construction in Back End:

Thus we shoud know that if the backend provides list of nodes and relationships in JSON as the following, things are perfectly connected!

Nodes:

[{"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
 {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}]

Relationships:

[{"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"},
 {"source": "p_1039", "target": "c_132", "properties": { "share": "3.0" }, "edge": "hold_share"}]

We could construct it as:

def make_graph_response(resp) -> dict:
    nodes, relationships = list(), list()
    for row_index in range(resp.row_size()):
        path = resp.row_values(row_index)[0].as_path()
        _nodes = [
            {
                "id": node.get_id(), "tag": node.tags()[0],
                "name": node.properties(node.tags()[0]).get("name", "")
                }
                for node in path.nodes()
        ]
        nodes.extend(_nodes)
        _relationships = [
            {
                "source": rel.start_vertex_id(),
                "target": rel.end_vertex_id(),
                "properties": rel.properties(),
                "edge": rel.edge_name()
                }
                for rel in path.relationships()
        ]
        relationships.extend(_relationships)
    return {"nodes": nodes, "relationships": relationships}

The Flask App

Then Let's create a Flask App to consume the HTTP API request and return the data designed as above.

from flask import Flask, jsonify, request



app = Flask(__name__)


@app.route("/")
def root():
    return "Hey There?"


@app.route("/api", methods=["POST"])
def api():
    request_data = request.get_json()
    entity = request_data.get("entity", "")
    if entity:
        resp = query_shareholding(entity)
        data = make_graph_response(resp)
    else:
        data = dict() # tbd
    return jsonify(data)


def parse_nebula_graphd_endpoint():
    ng_endpoints_str = os.environ.get(
        'NG_ENDPOINTS', '127.0.0.1:9669,').split(",")
    ng_endpoints = []
    for endpoint in ng_endpoints_str:
        if endpoint:
            parts = endpoint.split(":")  # we dont consider IPv6 now
            ng_endpoints.append((parts[0], int(parts[1])))
    return ng_endpoints

def query_shareholding(entity):
    query_string = (
        f"USE shareholding; "
        f"MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) "
        f"WHERE id(v) IN ['{ entity }'] RETURN p LIMIT 100"
    )
    session = connection_pool.get_session('root', 'nebula')
    resp = session.execute(query_string)
    return resp

And by starting this Flask App instance:

export NG_ENDPOINTS="192.168.8.137:9669"
python3 app.py

 * Serving Flask app 'app' (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
[2021-10-13 18:30:17,574]: * Running on all addresses.
   WARNING: This is a development server. Do not use it in a production deployment.
[2021-10-13 18:30:17,574]: * Running on http://192.168.10.14:5000/ (Press CTRL+C to quit)

we could then query the API with cURL like this:

curl --header "Content-Type: application/json" \
     --request POST \
     --data '{"entity": "c_132"}' \
     http://192.168.10.14:5000/api | jq

{
  "nodes": [
    {
      "id": "c_132",
      "name": "\"Chambers LLC\"",
      "tag": "corp"
    },
    {
      "id": "c_245",
      "name": "\"Thompson-King\"",
      "tag": "corp"
    },
    {
      "id": "c_132",
      "name": "\"Chambers LLC\"",
      "tag": "corp"
    },
...
    }
  ],
  "relationships": [
    {
      "edge": "hold_share",
      "properties": "{'share': 0.0}",
      "source": "c_245",
      "target": "c_132"
    {
      "edge": "hold_share",
      "properties": "{'share': 9.0}",
      "source": "p_1767",
      "target": "c_132"
    },
    {
      "edge": "hold_share",
      "properties": "{'share': 11.0}",
      "source": "p_1997",
      "target": "c_132"
    },
...
    },
    {
      "edge": "reletive_with",
      "properties": "{'degree': 51}",
      "source": "p_7283",
      "target": "p_4723"
    }
  ]
}

Upstreams Projects

Owner
Wey Gu
Developer Advocate @vesoft-inc
Wey Gu
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022