A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Overview

Continuous Wasserstein-2 Benchmark

This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark (paper on arxiv) by Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov and Evgeny Burnaev.

The repository contains a set of continuous benchmark measures for testing optimal transport solvers for quadratic cost (Wasserstein-2 distance), the code for optimal transport solvers and their evaluation.

Citation

@article{korotin2021neural,
  title={Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark},
  author={Korotin, Alexander and Li, Lingxiao and Genevay, Aude and Solomon, Justin and Filippov, Alexander and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2106.01954},
  year={2021}
}

Pre-requisites

The implementation is GPU-based. Single GPU (~GTX 1080 ti) is enough to run each particular experiment. Tested with

torch==1.3.0 torchvision==0.4.1

The code might not run as intended in newer torch versions.

Related repositories

Loading Benchmark Pairs

from src import map_benchmark as mbm

# Load benchmark pair for dimension 16 (2, 4, ..., 256)
benchmark = mbm.Mix3ToMix10Benchmark(16)
# OR load 'Early' images benchmark pair ('Early', 'Mid', 'Late')
# benchmark = mbm.CelebA64Benchmark('Early')

# Sample 32 random points from the benchmark measures
X = benchmark.input_sampler.sample(32)
Y = benchmark.output_sampler.sample(32)

# Compute the true forward map for points X
X.requires_grad_(True)
Y_true = benchmark.map_fwd(X, nograd=True)

Repository structure

All the experiments are issued in the form of pretty self-explanatory jupyter notebooks (notebooks/). Auxilary source code is moved to .py modules (src/). Continuous benchmark pairs are stored as .pt checkpoints (benchmarks/).

Evaluation of Existing Solvers

We provide all the code to evaluate existing dual OT solvers on our benchmark pairs. The qualitative results are shown below. For quantitative results, see the paper.

Testing Existing Solvers On High-Dimensional Benchmarks

  • notebooks/MM_test_hd_benchmark.ipynb -- testing [MM], [MMv2] solvers and their reversed versions
  • notebooks/MMv1_test_hd_benchmark.ipynb -- testing [MMv1] solver
  • notebooks/MM-B_test_hd_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/W2_test_hd_benchmark.ipynb -- testing [W2] solver and its reversed version
  • notebooks/QC_test_hd_benchmark.ipynb -- testing [QC] solver
  • notebooks/LS_test_hd_benchmark.ipynb -- testing [LS] solver

Testing Existing Solvers On Images Benchmark Pairs (CelebA 64x64 Aligned Faces)

  • notebooks/MM_test_images_benchmark.ipynb -- testing [MM] solver and its reversed version
  • notebooks/W2_test_images_benchmark.ipynb -- testing [W2]
  • notebooks/MM-B_test_images_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/QC_test_images_benchmark.ipynb -- testing [QC] solver

[LS], [MMv2], [MMv1] solvers are not considered in this experiment.

Generative Modeling by Using Existing Solvers to Compute Loss

Warning: training may take several days before achieving reasonable FID scores!

  • notebooks/MM_test_image_generation.ipynb -- generative modeling by [MM] solver or its reversed version
  • notebooks/W2_test_image_generation.ipynb -- generative modeling by [W2] solver

For [QC] solver we used the code from the official WGAN-QC repo.

Training Benchmark Pairs From Scratch

This code is provided for completeness and is not intended to be used to retrain existing benchmark pairs, but might be used as the base to train new pairs on new datasets. High-dimensional benchmak pairs can be trained from scratch. Training images benchmark pairs requires generator network checkpoints. We used WGAN-QC model to provide such checkpoints.

  • notebooks/W2_train_hd_benchmark.ipynb -- training high-dimensional benchmark bairs by [W2] solver
  • notebooks/W2_train_images_benchmark.ipynb -- training images benchmark bairs by [W2] solver

Credits

Owner
Alexander
PhD Student (Computer Science) at Skolkovo University of Science and Technology (Moscow, Russia)
Alexander
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023