Simulator for FRC 2022 challenge: Rapid React

Related tags

Deep Learningrrsim
Overview

rrsim

Simulator for FRC 2022 challenge: Rapid React

out-1.mp4

Usage

In order to run the simulator use the following:

python3 rrsim.py [config_path]

where config_path is the path to the json configuration (default value is default_configs/config.json).

Configurations

In order to configure game, field and robots, a config JSON file must be created. See default_configs directory for examples of configurations. The following are parameters that can be defined in the configuration:

Per-robot parameters:

Name Type Meaning Example
starting_position Tuple[float, float] Starting position of the robot [1.0, 2.0]
collect_time float Time it takes the robot to collect cargo 3.0
shoot_time float Time it takes the robot to shoot cargo 1.0
velocity float Drive velocity of the robot 5.0
accuracy float Shooting accuracy of the robot 0.95
alliance Enum{RED,BLUE} Alliance of the robot RED

Field parameters:

Name Type Meaning Example
cargo_hub_timeout float Time it takes from the moment cargo enters the hub to the moment it is collectable on the floor 10.0
match_length float Length of the simulation 120.0

Units for the values in the configurations can be seen in the units section.

In addition to the configuration JSON file, a cargo distribution CSV file is required. This file is basically a matrix of integers where every integer represents the probability (relative to the other integers) that a cargo will appear in the 1x1 meter square corresponding to that number in the matrix. A default distribution is supplied in the default_configs directory.

The Simulation

Once a configuration has been created (or selected) and the simulator was ran, A window will pop up which contains the actual simulator. This window consists of two sections. In the top - the field, in which robots are represented by squares and cargo by circles. In the bottom - the scoreboard, which is itself divided into three areas, from left to right - blue score, time since the beginning of the match, red score.

Units

rrsim uses the following units:

Quantity Units
Length/Distance Meters
Time Seconds
Velocity Meters per second

Planned Additions

  • Ability to fast forward the simulation.
  • Configurable cycle types for robots
    • Collect only from one side of the field
    • Play defence
    • Collect two balls at a time
    • Score to low hub
  • Penalty for having many robots in the same place
    • Something like "work 10% slower for every robot in your immediate vicinity".

And here are some additions that are probably too overkill to bother with:

  • Robot path planning
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023