Explore extreme compression for pre-trained language models

Overview

Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

Before Training

install some libraries

 pip install tensorly==0.5.0

Torch is needed, torch 1.0-1.4 is preferred

Install horovod for distributed learning

Configuration Install horovod on GPU

pip install horovod[pytorch]

loading pre-trained models

wget https://huggingface.co/bert-base-uncased/resolve/main/pytorch_model.bin -P  models/bert-base-uncased
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt -P  models/bert-base-uncased
cp models/bert-base-uncased/pytorch_model.bin models/bert-td-72-384/pytorch_model.bin 
cp models/bert-base-uncased/vocab.txt models/bert-td-72-384/vocab.txt

generate training data for given corpora (e.g., saved in the path "corpora" )

python pregenerate_training_data.py --train_corpus ${CORPUS_RAW} \ 
                  --bert_model ${BERT_BASE_DIR}$ \
                  --reduce_memory --do_lower_case \
                  --epochs_to_generate 3 \
                  --output_dir ${CORPUS_JSON_DIR}$ 

task data augmentation

python data_augmentation.py --pretrained_bert_model ${BERT_BASE_DIR}$ \
                            --glove_embs ${GLOVE_EMB}$ \
                            --glue_dir ${GLUE_DIR}$ \  
                            --task_name ${TASK_NAME}$

Decomposing BERT

decomposition and general distillation

Run with horovod

mpirun -np 8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib python3 general_distill.py --teacher_model models/bert-base-uncased --student_model models/bert-gd-72-384 --pregenerated_data data/pregenerated_data --num_train_epochs 2.0 --train_batch_size 32 --output_dir output/bert-gd-72-384 -use_swap --do_lower_case

To restrict sharing among SAN or FFN, add "ops" and set "ops" to be "san" or "ffn" in bert-gd-72-384/config.json

ops = "san"

Evaluation

Task distillation with data augmentation in fine-tuning phase

Rename a pretrained model as "", for instance, change step_0_pytorch_model.bin to pytorch_model.bin, and change load_compressed_model from false to true in output/config.json

Task distillation for distributed training

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 task_distill.py --teacher_model models/bert-base-uncasedi/STS-B --student_model models/bert-gd-72-384 --task_name STS-B --aug_train --data_dir data/glue_data/SST-2 --max_seq_length 128 --train_batch_size 32 --aug_train --learning_rate 2e-5 --num_train_epochs 3.0 --output_dir ./output/36-256-STS-B

Task distillation for single gpu

python3  task_distill.py  --teacher_model models/bert-base-uncased   --student_model  models/bert-td-72-384  --output output_demo  --data_dir  data/glue_data/SST-2   --task_name  SST-2  --do_lower_case --aug_train   

For augmentation, you should add --aug_train

Get test result for model

python run_glue.py --model_name_or_path  models/bert-td-72-384/SST-2 --task_name SST-2 --do_eval --do_predict --data_dir data/glue_data/STS-B --max_seq_length 128 --save_steps 500 --save_total_limit 2 --output_dir ./output/SST-2
Owner
twinkle
Stay hungry, stay foolish.
twinkle
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022