Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

Overview

PyMAF

This repository contains the code for the following paper:

3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop
Hongwen Zhang*, Yating Tian*, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, Zhenan Sun

* Equal contribution

[Project Page] [ArXiv] [Paper]

PyMAF

Requirements

  • Python 3.6.10

packages

necessary files

mesh_downsampling.npz & DensePose UV data

  • Run the following script to fetch mesh_downsampling.npz & DensePose UV data from other repositories.
bash fetch_data.sh

SMPL model files

Fetch preprocessed data from SPIN.

Download the pre-trained model and put it into the ./data/pretrained_model directory.

After collecting the above necessary files, the directory structure of ./data is expected as follows.

./data
├── dataset_extras
│   └── .npz files
├── J_regressor_extra.npy
├── J_regressor_h36m.npy
├── mesh_downsampling.npz
├── pretrained_model
│   └── PyMAF_model_checkpoint.pt
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smpl_mean_params.npz
├── static_fits
│   └── .npy files
└── UV_data
    ├── UV_Processed.mat
    └── UV_symmetry_transforms.mat

Demo

[UPDATE] You can first give it a try on Google Colab using the notebook we have prepared, which is no need to prepare the environment yourself: Open In Colab

Run the demo code.

python3 demo.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --vid_file ./flashmob.mp4


Frame by frame reconstruction. Video clipped from here.

Evaluation

Human3.6M / 3DPW

Run the evaluation code. Using --dataset to specify the evaluation dataset.

# Example usage:

# Human3.6M Protocol 2
python3 eval.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --dataset=h36m-p2 --log_freq=20

# 3DPW
python3 eval.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --dataset=3dpw --log_freq=20

COCO Keypoint Localization

  1. Download the preprocessed data coco_2014_val.npz. Put it into the ./data/dataset_extras directory.

  2. Run the COCO evaluation code.

python3 eval_coco.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt

Training

To perform training, we need to collect preprocessed files of training datasets at first.

The preprocessed labels have the same format as SPIN and can be retrieved from here. Please refer to SPIN for more details about data preprocessing.

PyMAF is trained on Human3.6M at the first stage and then trained on the mixture of both 2D and 3D datasets at the second stage. Example usage:

# training on Human3.6M
python3 train.py --regressor pymaf_net --single_dataset --misc TRAIN.BATCH_SIZE 64
# training on mixed datasets
python3 train.py --regressor pymaf_net --pretrained_checkpoint path/to/checkpoint_file.pt --misc TRAIN.BATCH_SIZE 64

Running the above commands will use Human3.6M or mixed datasets for training, respectively. We can monitor the training process by setting up a TensorBoard at the directory ./logs.

Citation

If this work is helpful in your research, please cite the following paper.

@article{pymaf2021,
  title={3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop},
  author={Zhang, Hongwen and Tian, Yating and Zhou, Xinchi and Ouyang, Wanli and Liu, Yebin and Wang, Limin and Sun, Zhenan},
  journal={arXiv preprint arXiv:2103.16507},
  year={2021}
}

Acknowledgments

The code is developed upon the following projects. Many thanks to their contributions.

Owner
Hongwen Zhang
Hongwen Zhang
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022