Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Related tags

Deep LearningASL
Overview

Shaping Visual Representations with Attributes for Few-Shot Learning

This code implements the Shaping Visual Representations with Attributes for Few-Shot Learning (ASL).

Citation

If you find our work useful, please consider citing our work using the bibtex:

@Article{chen2021asl,
	author  = {Chen, Haoxing and Li, Huaxiong and Li, Yaohui and Chen, Chunlin},
	title   = {Shaping Visual Representations with Attributes for Few-Shot Learning},
	journal = {arXiv preprint arXiv:2112.06398},
	year    = {2021},
}

Prerequisites

  • Linux
  • Python 3.7
  • Pytorch 1.2
  • Torchvision 0.4
  • GPU + CUDA CuDNN

Datasets

You can download datasets automatically by adding --download when running the program. However, here we give steps to manually download datasets to prevent problems such as poor network connection: CUB:

  1. Create the dir ASL/datasets/cub;
  2. Download CUB_200_2011.tgz from here, and put the archive into ASL/datasets/cub;
  3. Running the program with --download.

SUN:

  1. Create the dir ASL/datasets/sun;
  2. Download the archive of images from here, and put the archive into ASL/datasets/sun;
  3. Download the archive of attributes from here, and put the archive into ASL/datasets/sun;
  4. Running the program with --download.

Few-shot Classification

Download data and run on multiple GPUs with special settings:

python train.py --train-data [train_data] --test-data [test_data] --backbone [backbone] --num-shots [num_shots] --batch-tasks [batch_tasks] --train-tasks [train_tasks] --semantic-type [semantic_type] --multi-gpu --download

Run on CUB dataset, ResNet-12 backbone, 1-shot, single GPU

python train.py --train-data cub --test-data cub --backbone resnet12 --num-shots 1 --batch-tasks 4 --train-tasks 60000 --semantic-type class_attributes

Note that batch tasks are set to 4/1 when training 1-shot/5-shot tasks.

Our code is based on AGAM and TorchMeta.

Contacts

Please feel free to contact us if you have any problems.

Email: [email protected]

Owner
chx_nju
Master student in Nanjing University.
chx_nju
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021