A robust pointcloud registration pipeline based on correlation.

Related tags

Deep Learningphaser
Overview

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration

Ubuntu 18.04+ROS Melodic: Build Status


Overview

Pointcloud registration using correspondences is inefficient and prone to errors in the many steps of correspondence extraction, description, and matching. Similarly, the most widespread registration methods work only locally, requiring an initial guess already close to the true solution, something unaffordable in real robotic deployments. We propose an algorithm for the registration of partially overlapping pointclouds that operates at the global level and on the raw data, i.e., no initial guess as well as no candidate matches are required. We exploit the properties of Fourier analysis to derive a novel registration pipeline based on the cross-correlation of the phases.

Packages

PHASER is composed of the following packages:

  • phaser_core: The registration core of PHASER. Contains the spherical and spatial correlation.
  • phaser_ros: This is a ROS wrapper to use the PHASER as a registration framework. Hardly used anymore.
  • phaser_common: Exposes common classes, utils and models.
  • phaser_pre: Experimental preprocessing of pointcloud data.
  • phaser_viz: Provides visualization functions.
  • phaser_test_data: Contains example data as PLYs.
  • phaser_share: Provides run and build scripts.

Installation

PHASER requires ROS and some other dependencies to be installed:

Dependencies

  # Some standard requirements
  sudo apt-get install -y doxygen autotools-dev \
     dh-autoreconf libboost-all-dev python-setuptools git g++ cppcheck \
     libgtest-dev python-git pylint \
     python-termcolor liblog4cplus-dev cimg-dev python-wstool \
     python-catkin-tools \

   # Ubuntu 18.04 / ROS Melodic.
   sudo apt-get install -y clang-format-6.0 ros-melodic-pcl-conversions \
     libpcl-dev libnlopt-dev \

Important: Currently, PHASER also requires nvcc for compilation as most-recent experiments deal with performing the FFTs on the GPU.

For the remaining package dependencies, run within the caktin workspace

  wstool init
  wstool merge phaser/dependencies.rosinstall
  wstool update

Building the project:

  catkin build phaser_ros

Optionally one can build an run all unit tests using:

  ./phaser_share/run_build_tests

However, this might take some minutes to finish.

Example

The package phaser_core provides a simple test driver to run PHASER using two pointclouds stored as .ply files. Additionally, run script for the test driver is provided in the phaser_share directory.

The initial alignment of the two pointclouds is as follows: PHASER Input Example

By running

./phaser_share/run_phaser_core_driver

the registered pointcloud is written to disk as registered.ply. You might need to adapt the source and target pointcloud paths. Furthermore, other pointcloud examples can be found in the phaser_test_data/test_clouds/os0/ directory.

In this particular case, the registration is configured to be very fine. Thus, it will take a few seconds to finish: PHASER Registered Example

Development Guidelines

Reference

Our paper is available at
Bernreiter, Lukas, Lionel Ott, Juan Nieto, Roland Siegwart, and Cesar Cadena. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration." IEEE Robotics and Automation Letters 6, no. 2 (2021): 855-862. [Link] [ArXiv].

BibTex:

@article{bernreiter2021phaser,
  title={PHASER: A Robust and Correspondence-Free Global Pointcloud Registration},
  author={Bernreiter, Lukas and Ott, Lionel and Nieto, Juan and Siegwart, Roland and Cadena, Cesar},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={855--862},
  year={2021},
  publisher={IEEE}
}
Owner
ETHZ ASL
ETHZ ASL
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022