imbalanced-DL: Deep Imbalanced Learning in Python

Overview

imbalanced-DL: Deep Imbalanced Learning in Python

Overview

imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanced learning easier for researchers and real-world users. From our experiences, we observe that to tackcle deep imbalanced learning, there is a need for a strategy. That is, we may not just address this problem with one single model or approach. Thus in this package, we seek to provide several strategies for deep imbalanced learning. The package not only implements several popular deep imbalanced learning strategies, but also provides benchmark results on several image classification tasks. Futhermore, this package provides an interface for implementing more datasets and strategies.

Strategy

We provide some baseline strategies as well as some state-of-the-are strategies in this package as the following:

Environments

  • This package is tested on Linux OS.
  • You are suggested to use a different virtual environment so as to avoid package dependency issue.
  • For Pyenv & Virtualenv users, you can follow the below steps to create a new virtual environment or you can also skip this step.
Pyenv & Virtualenv (Optinal)
  • For dependency isolation, it's better to create another virtual environment for usage.
  • The following will be the demo for creating and managing virtual environment.
  • Install pyenv & virtualenv first.
  • pyenv virtualenv [version] [virtualenv_name]
    • For example, if you'd like to use python 3.6.8, you can do: pyenv virtualenv 3.6.8 TestEnv
  • mkdir [dir_name]
  • cd [dir_name]
  • pyenv local [virtualenv_name]
  • Then, you will have a new (clean) python virtual environment for the package installation.

Installation

Basic Requirement

  • Python >= 3.6
git clone https://github.com/ntucllab/imbalanced-DL.git
cd imbalanceddl
python -m pip install -r requirements.txt
python setup.py install

Usage

We highlight three key features of imbalanced-DL as the following:

(0) Imbalanced Dataset:

  • We support 5 benchmark image datasets for deep imbalanced learing.
  • To create and ImbalancedDataset object, you will need to provide a config_file as well as the dataset name you would like to use.
  • Specifically, inside the config_file, you will need to specify three key parameters for creating imbalanced dataset.
    • imb_type: you can choose from exp (long-tailed imbalance) or step imbalanced type.
    • imb_ratio: you can specify the imbalanceness of your data, typically researchers choose 0.1 or 0.01.
    • dataset_name: you can specify 5 benchmark image datasets we provide, or you can implement your own dataset.
    • For an example of the config_file, you can see example/config.
  • To contruct your own dataset, you should inherit from BaseDataset, and you can follow torchvision.datasets.ImageFolder to construct your dataset in PyTorch format.
from imbalanceddl.dataset.imbalance_dataset import ImbalancedDataset

# specify the dataset name
imbalance_dataset = ImbalancedDataset(config, dataset_name=config.dataset)

(1) Strategy Trainer:

  • We support 6 different strategies for deep imbalance learning, and you can either choose to train from scratch, or evaluate with the best model after training. To evaluate with the best model, you can get more in-depth metrics such as per class accuracy for further evaluation on the performance of the selected strategy. We provide one trained model in example/checkpoint_cifar10.
  • For each strategy trainer, it is associated with a config_file, ImbalancedDataset object, model, and strategy_name.
  • Specifically, the config_file will provide some training parameters, where the default settings for reproducing benchmark result can be found in example/config. You can also set these training parameters based on your own need.
  • For model, we currently provide resnet32 and resnet18 for reproducing the benchmark results.
  • We provide a build_trainer() function to return the specified trainer as the following.
from imbalanceddl.strategy.build_trainer import build_trainer

# specify the strategy
trainer = build_trainer(config,
                        imbalance_dataset,
                        model=model,
                        strategy=config.strategy)
# train from scratch
trainer.do_train_val()

# Evaluate with best model
trainer.eval_best_model()
  • Or you can also just select the specific strategy you would like to use as:
from imbalanceddl.strategy import LDAMDRWTrainer

# pick the trainer
trainer = LDAMDRWTrainer(config,
                         imbalance_dataset,
                         model=model,
                         strategy=config.strategy)

# train from scratch
trainer.do_train_val()

# Evaluate with best model
trainer.eval_best_model()
  • To construct your own strategy trainer, you need to inherit from Trainer class, where in your own strategy you will have to implement get_criterion() and train_one_epoch() method. After this you can choose whether to add your strategy to build_trainer() function or you can just use it as the above demonstration.

(2) Benchmark research environment:

  • To conduct deep imbalanced learning research, we provide example codes for training with different strategies, and provide benchmark results on five image datasets. To quickly start training CIFAR-10 with ERM strategy, you can do:
cd example
python main.py --gpu 0 --seed 1126 --c config/config_cifar10.yaml --strategy ERM

  • Following the example code, you can not only get results from baseline training as well as state-of-the-art performance such as LDAM or Remix, but also use this environment to develop your own algorithm / strategy. Feel free to add your own strategy into this package.
  • For more information about example and usage, please see the Example README

Benchmark Results

We provide benchmark results on 5 image datasets, including CIFAR-10, CIFAR-100, CINIC-10, SVHN, and Tiny-ImageNet. We follow standard procedure to generate imbalanced training dataset for these 5 datasets, and provide their top 1 validation accuracy results for research benchmark. For example, below you can see the result table of Long-tailed Imbalanced CIFAR-10 trained on different strategies. For more detailed benchmark results, please see example/README.md.

  • Long-tailed Imbalanced CIFAR-10
imb_type imb_factor Model Strategy Validation Top 1
long-tailed 100 ResNet32 ERM 71.23
long-tailed 100 ResNet32 DRW 75.08
long-tailed 100 ResNet32 LDAM-DRW 77.75
long-tailed 100 ResNet32 Mixup-DRW 82.11
long-tailed 100 ResNet32 Remix-DRW 81.82

Test

  • python -m unittest -v

Contact

If you have any question, please don't hesitate to email [email protected]. Thanks !

Acknowledgement

The authors thank members of the Computational Learning Lab at National Taiwan University for valuable discussions and various contributions to making this package better.

Owner
NTUCSIE CLLab
Computational Learning Lab, Dept. of Computer Science and Information Engineering, National Taiwan University
NTUCSIE CLLab
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022