[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

Overview

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring

License CC BY-NC

Checkout for the demo (GUI/Google Colab)!
The GUI version might occasionally be offline

This repository contains the official PyTorch implementation of the following paper:

Iterative Filter Adaptive Network for Single Image Defocus Deblurring
Junyong Lee, Hyeongseok Son, Jaesung Rim, Sunghyun Cho, Seungyong Lee, CVPR 2021

About the Research

Click here

Iterative Filter Adaptive Network (IFAN)

Our deblurring network is built upon a simple encoder-decoder architecture consisting of a feature extractor, reconstructor, and IFAN module in the middle. The feature extractor extracts defocused features and feeds them to IFAN. IFAN removes blur in the feature domain by predicting spatially-varying deblurring filters and applying them to the defocused features using IAC. The deblurred features from IFAN is then passed to the reconstructor, which restores an all-in-focus image.

Iterative Adaptive Convolution Layer

The IAC layer iteratively computes feature maps as follows (refer Eq. 1 in the main paper):

Separable filters in our IAC layer play a key role in resolving the limitation of the FAC layer. Our IAC layer secures larger receptive fields at much lower memory and computational costs than the FAC layer by utilizing 1-dim filters, instead of 2-dim convolutions. However, compared to dense 2-dim convolution filters in the FAC layer, our separable filters may not provide enough accuracy for deblurring filters. We handle this problem by iteratively applying separable filters to fully exploit the non-linear nature of a deep network. Our iterative scheme also enables small-sized separable filters to be used for establishing large receptive fields.

Disparity Map Estimation & Reblurring

To further improve the single image deblurring quality, we train our network with novel defocus-specific tasks: defocus disparity estimation and reblurring.

Disparity Map Estimation exploits dual-pixel data, which provides stereo images with a tiny baseline, whose disparities are proportional to defocus blur magnitudes. Leveraging dual-pixel stereo images, we train IFAN to predict the disparity map from a single image so that it can also learn to more accurately predict blur magnitudes.

Reblurring, motivated by the reblur-to-deblur scheme, utilizes deblurring filters predicted by IFAN for reblurring all-in-focus images. For accurate reblurring, IFAN needs to predict deblurring filters that contain accurate information about the shapes and sizes of defocus blur. Based on this, during training, we introduce an additional network that inverts predicted deblurring filters to reblurring filters, and reblurs an all-in-focus image.

The Real Depth of Field (RealDOF) test set

We present the Real Depth of Field (RealDOF) test set for quantitative and qualitative evaluations of single image defocus deblurring. Our RealDOF test set contains 50 image pairs, each of which consists of a defocused image and its corresponding all-in-focus image that have been concurrently captured for the same scene, with the dual-camera system. Refer Sec. 1 in the supplementary material for more details.

Getting Started

Prerequisites

Tested environment

Ubuntu Python PyTorch CUDA

  1. Environment setup

    $ git clone https://github.com/codeslake/IFAN.git
    $ cd IFAN
    
    $ conda create -y --name IFAN python=3.8 && conda activate IFAN
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip test sets (DPDD, PixelDP, CUHK and RealDOF) under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── DPDD
      │   ├── PixelDP
      │   ├── CUHK
      │   ├── RealDOF
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/defocus_deblur/, which can be modified by config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── IFAN.pytorch
      │   ├── ...
      │   ├── IFAN_dual.pytorch
      

Testing models of CVPR2021

## Table 2 in the main paper
# Our final model used for comparison
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN --network IFAN --config config_IFAN --data DPDD --ckpt_abs_name ckpt/IFAN.pytorch

## Table 4 in the main paper
# Our final model with N=8
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_8 --network IFAN --config config_IFAN_8 --data DPDD --ckpt_abs_name ckpt/IFAN_8.pytorch

# Our final model with N=26
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_26 --network IFAN --config config_IFAN_26 --data DPDD --ckpt_abs_name ckpt/IFAN_26.pytorch

# Our final model with N=35
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_35 --network IFAN --config config_IFAN_35 --data DPDD --ckpt_abs_name ckpt/IFAN_35.pytorch

# Our final model with N=44
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_44 --network IFAN --config config_IFAN_44 --data DPDD --ckpt_abs_name ckpt/IFAN_44.pytorch

## Table 1 in the supplementary material
# Our model trained with 16 bit images
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_16bit --network IFAN --config config_IFAN_16bit --data DPDD --ckpt_abs_name ckpt/IFAN_16bit.pytorch

## Table 2 in the supplementary material
# Our model taking dual-pixel stereo images as an input
CUDA_VISIBLE_DEVICES=0 python run.py --mode IFAN_dual --network IFAN_dual --config config_IFAN --data DPDD --ckpt_abs_name ckpt/IFAN_dual.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/IFAN_CVPR2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • Options
    • --data: The name of a dataset to evaluate. DPDD | RealDOF | CUHK | PixelDP | random. Default: DPDD
      • The folder structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any images, which should be placed as [DATASET_ROOT]/random/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@InProceedings{Lee_2021_CVPR,
    author = {Lee, Junyong and Son, Hyeongseok and Rim, Jaesung and Cho, Sunghyun and Lee, Seungyong},
    title = {Iterative Filter Adaptive Network for Single Image Defocus Deblurring},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
Supplementary
Checkpoint Files
The DPDD dataset (reference)
The PixelDP test set (reference)
The CUHK dataset (reference)
The RealDOF test set

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please checkout other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Namish Khanna 40 Oct 11, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022