To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

Related tags

Deep Learningjaxton
Overview

JaxTon

💯 JAX exercises

License GitHub Twitter

Mission 🚀

To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts.

JAX

The JAX package in Python is a library for high performance and efficient machine learning research.

It is commonly used for various deep learning tasks and runs seamlessly on CPUs, GPUs as well as TPUs.

Exercises 📖

There are a total of 100 JAX exercises divided into 10 sets of Jupyter Notebooks with 10 exercises each. It is recommended to go through the exercises in order but you may start with any set depending on your expertise.

Structured as exercises & tutorials - Choose your style
Suitable for beginners, intermediates & experts - Choose your level
Available on Colab, Kaggle, Binder & GitHub - Choose your platform
Supports running on CPU, GPU & TPU - Choose your backend

Set 01 • JAX Introduction • Beginner • Exercises 1-10

Style Colab Kaggle Binder GitHub
Exercises 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022
Solutions 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022

Set 02 • Data Operations • Beginner • Exercises 11-20

Style Colab Kaggle Binder GitHub
Exercises 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022
Solutions 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022

Set 03 • Pseudorandom Numbers • Beginner • Exercises 21-30

Style Colab Kaggle Binder GitHub
Exercises 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022
Solutions 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022

Set 04 • Just-In-Time (JIT) Compilation • Beginner • Exercises 31-40

Style Colab Kaggle Binder GitHub
Exercises 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022
Solutions 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022

Set 05 • Control Flows • Beginner • Exercises 41-50

Style Colab Kaggle Binder GitHub
Exercises 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022
Solutions 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022

Set 06 • Automatic Differentiation • Intermediate • Exercises 51-60

Style Colab Kaggle Binder GitHub
Exercises 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022
Solutions 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022

Set 07 • Automatic Vectorization • Intermediate • Exercises 61-70

Style Colab Kaggle Binder GitHub
Exercises 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022
Solutions 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022

Set 08 • Pytrees • Intermediate • Exercises 71-80

Style Colab Kaggle Binder GitHub
Exercises 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022
Solutions 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022

Set 09 • Neural Networks • Expert • Exercises 81-90

Style Colab Kaggle Binder GitHub
Exercises 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022
Solutions 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022

Set 10 • Capstone Project • Expert • Exercises 91-100

Style Colab Kaggle Binder GitHub
Exercises 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022
Solutions 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022

The Jupyter Notebooks can also be run locally by cloning the repo and running on your local jupyter server.

git clone https://github.com/vopani/jaxton.git
python3 -m pip install notebook
jupyter notebook

P.S. The notebooks will be periodically updated to improve the exercises and support the latest version.

Contribution 🛠️

Please create an Issue for any improvements, suggestions or errors in the content.

You can also tag @vopani on Twitter for any other queries or feedback.

Credits 🙏

JAX

License 📋

This project is licensed under the Apache License 2.0.

Owner
Rohan Rao
9-time Indian Sudoku Champion | Senior Data Scientist @h2oai | Quadruple Kaggle Grandmaster
Rohan Rao
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022