Official implementation of Densely connected normalizing flows

Overview

Densely connected normalizing flows

This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster available here.

PWC PWC

Setup

  • CUDA 11.1
  • Python 3.8
pip install -r requirements.txt
pip install -e .

Training

cd ./experiments/image

CIFAR-10:

python train.py --epochs 400 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.9975 --warmup 5000  --eval_every 1 --check_every 10 --dataset cifar10 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/cifar10_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 420

ImageNet32:

python train.py --epochs 20 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet32 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet32_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 22

ImageNet64:

python train.py --epochs 10 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet64 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet64_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 11

CelebA:

python train.py --epochs 50 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset celeba --augmentation horizontal_flip --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/celeba_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 55

Note: Download instructions for ImageNet and CelebA are defined in denseflow/data/datasets/image/{dataset}.py

Evaluation

CIFAR-10:

python eval_loglik.py --model PATH_TO_MODEL --k 1000 --kbs 50

ImageNet32:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 50

ImageNet64 and CelebA:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 25

Model weights

Model weights are stored here.

Samples generation

Generated samples are stored in PATH_TO_MODEL/samples

python eval_sample.py --model PATH_TO_MODEL

Note: PATH_TO_MODEL has to contain check directory.

ImageNet 32x32

Alt text

ImageNet 64x64

Alt text

CelebA

Alt text

Acknowledgements

Significant part of this code benefited from SurVAE [1] code implementation, available under MIT license.

References

[1] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae flows: Surjections to bridge the gap between vaes and flows. InAdvances in Neural Information Processing Systems 33. Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020.

Owner
Matej Grcić
PhD Student | Research associate focused on Computer Vision @ University of Zagreb, Faculty of Electrical Engineering and Computing
Matej Grcić
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
wlad 2 Dec 19, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023