3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

Overview

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

This repository contains the source code and dataset for the paper 3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos by Zipeng Ye, Mengfei Xia, Yanan Sun, Ran Yi, Minjing Yu, Juyong Zhang, Yu-Kun Lai and Yong-Jin Liu, which is accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG).

This repository contains two parts: dataset and source code.

2D and 3D Caricature Dataset

2D Caricature Dataset

2d_dataset

We collect 5,343 hand-drawn portrait caricature images from Pinterest.com and WebCaricature dataset with facial landmarks extracted by a landmark detector, followed by human interaction for correction if needed.

The 2D dataset is in cari_2D_dataset.zip file.

3D Caricature Dataset

3d_dataset

We use the method to generate 5,343 3D caricature meshes of the same topology. We align the pose of the generated 3D caricature meshes with the pose of a template 3D head using an ICP method, where we use 5 key landmarks in eyes, nose and mouth as the landmarks for ICP. We normalize the coordinates of the 3D caricature mesh vertices by translating the center of meshes to the origin and scaling them to the same size.

The 3D dataset is in cari_3D_dataset.zip file.

3DCariPCA

We use the 3D caricature dataset to build a PCA model. We use sklearn.decomposition.PCA to build 3DCariPCA. The PCA model is pca200_icp.model file. You could use joblib to load the model and use it.

Download

You can download the two datasets and PCA in google drive and BaiduYun (code: 3kz8).

Source Code

Running Environment

Ubuntu 16.04 + Python3.7

You can install the environment directly by using conda env create -f env.yml in conda.

Training

We use our 3D caricature dataset and CelebA-Mask-HQ dataset to train 3D-CariGAN. You could download CelebA-Mask-HQ dataset and then reconstruct their 3D normal heads of all images. The 3D normal heads are for calculating loss.

Inferring

The inferring code is cari_pipeline.py file in pipeline folder. You could train your model or use our pre-trained model.

The pipeline includes two optional sub-program eye_complete and color_complete, which are implemented by C++. You should compile them and then use them. The eye_complete is for completing the eye part of mesh and the color_complete is for texture completion.

Pre-trained Model

You can download pre-trained model latest.pth in google drive and BaiduYun (code: 3kz8). You should put it into ./checkpoints.

Additional notes

Please cite the following paper if the dataset and code help your research:

Citation:

@article{ye2021caricature,
 author = {Ye, Zipeng and Xia, Mengfei and Sun, Yanan and Yi, Ran and Yu, Minjing and Zhang, Juyong and Lai, Yu-Kun and Liu, Yong-Jin},
 title = {3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos},
 journal = {IEEE Transactions on Visualization and Computer Graphics},
 year = {2021},
 doi={10.1109/TVCG.2021.3126659},
}

The paper will be published.

METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022