Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Overview

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed

Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

Automatic labeling of the intervertebral disc is a difficult task, due to the many challenges such as complex background, the similarity between discs and bone area in MRI imaging, blurry image, and variation in an imaging modality. Precisely localizing spinal discs plays an important role in intervertebral disc labeling. Most of the literature work consider the semantic intervertebral disc labeling as a post-processing step, which applies on the top of the disc localization algorithm. Hence, the semantic intervertebral labeling highly depends on the disc localization algorithm and mostly fails when the localization algorithm cannot detect discs or falsely detects a background area as a disc. In this work, we aimed to mitigate this problem by reformulating the semantic intervertebral disc labeling using the pose estimation technique. If this code helps with your research please consider citing the following papers:

R. Azad, Lucas Rouhier, and Julien Cohen-Adad "Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling", MICCAI Workshop, 2021, download link.

Please consider starring us, if you found it useful. Thanks

Updates

  • 11-8-2021: Source code is available.

Prerequisties and Run

This code has been implemented in python language using Pytorch libarary and tested in ubuntu, though should be compatible with related environment. The required libraries are included in the requiremetns.txt file. Please follow the bellow steps to train and evaluate the model.

1- Download the Spine Generic Public Database (Multi-Subject).
2- Run the create_dataset.py to gather the required data from the Spin Generic dataset.
4- Run prepare_trainset.py to creat the training and validation samples.
Notice: To avoid the above steps we have provided the processed data for all train, validation and test sets here (should be around 150 MB) you can simply download it and continue with the rest steps.
5- Run the main.py to train and evaluate the model. Use the following command with the related arguments to perform the required action:
A- Train and evaluate the model python src/main.py. You can use --att true to use the attention mechanisim.
B- Evaluate the model python src/main.py --evaluate true it will load the trained model and evalute it on the validation set.
C- You can run make_res_gif.py to creat a prediction video using the prediction images generated by main.py for the validation set.
D- You can change the number of stacked hourglass by --stacks argument. For more details check the arguments section in main.py.
6- Run the test.py to evaluate the model on the test set alongside with the metrics.

Quick Overview

Diagram of the proposed method

Visualzie the attention channel

To extract and show the attention channel for the related input sample, we registered the attention channel by the forward hook. Thus with the following command, you can visualize the input sample, estimated vertebral disc location, and the attention channel.
python src/main.py --evaluate true --attshow true .

Attention visualization

Sample of detection result on the test set

Below we illustrated a sample of vertebral disc detection on the test set.

Test sample

Model weights

You can download the learned weights for each modality in the following table.

Method Modality Learned weights
Proposed model without attention T1w download
Proposed model without attention T2w download
Proposed model with attention T1w download
Proposed model with attention T2w download
Owner
Reza Azad
Deep Learning and Computer Vision Researcher
Reza Azad
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022