Repository for GNSS-based position estimation using a Deep Neural Network

Overview

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural Network (DNN) for position estimation using Global Navigation Satellite System (GNSS) measurements. This work was presented virtually at ION GNSS+ 2021 conference. The presentation can be seen here and our slides can be viewed here

Installation Instructions

This code was developed in a conda environment running on CentOS 7.9.2009 in Sherlock, Stanford University's HPC.

To create the conda environment, use conda env create -f deep-gnss.yml

Code Overview

Directory Structure

deep_gnss
|  config
|  data
|  py_scripts
|  src
   |  correction_network
   |  gnss_lib
   |  totalrecall

Description

Our code is divided into two main parts: src and py-scripts. src contains the core functionality that our project is built on while py-scripts contains standalone python scripts for generating simulated data and training and evaluating the neural network. config contains .yml files to set hyper-parameters for the corresponding scripts and can be modified depending on your requirements. data contains example data files that our code is designed to work with.

Within src, the correction_network module defines the PyTorch DataLoaders and Network models; gnss_lib contains code that is used to simulate/find expected GNSS measurements; totalrecall defines functions and code used to simulate measurements based on a pre-determined 2D NED trajectory.

Using our code

To run the train_*.py scripts, run the command python train_*.py prefix="name_of_your_experiment_here".

To run the data simulation code, run the command python data_gen.py.

Weights for trained networks can be found here

Acknowledgements

The Deep Sets model is taken from the original implementation

We also used the EphemerisManager from Jonathan Mitchell's analysis of the Android Raw GNSS Measurements Dataset (link to file)

Our coordinate analysis code is based on CommaAI's Laika repository

Citing this work

If you use this code in your research, please cite our paper

@inproceedings{kanhere2019consensus,
  title={ Improving GNSS Positioning using Neural Network-based Corrections},
  author={Kanhere, Ashwin Vivek and Gupta, Shubh and Shetty, Akshay and Gao, Grace Xingxin},
  booktitle={32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2021}
  year={2021}
}

Contact

For any feature requests or bug reports, please submit an issue in this GitHub repository with details or a minimal working example to replicate the bug.

For any comments, suggestions or queries about our work, please contact Prof. Grace Gao at gracegao [at] stanford [dot] edu

A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022