Distributed Evolutionary Algorithms in Python

Related tags

Deep Learningdeap
Overview

DEAP

Build status Download Join the chat at https://gitter.im/DEAP/deap Build Status Documentation Status

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and SCOOP.

DEAP includes the following features:

  • Genetic algorithm using any imaginable representation
    • List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  • Genetic programing using prefix trees
    • Loosely typed, Strongly typed
    • Automatically defined functions
  • Evolution strategies (including CMA-ES)
  • Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  • Co-evolution (cooperative and competitive) of multiple populations
  • Parallelization of the evaluations (and more)
  • Hall of Fame of the best individuals that lived in the population
  • Checkpoints that take snapshots of a system regularly
  • Benchmarks module containing most common test functions
  • Genealogy of an evolution (that is compatible with NetworkX)
  • Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

Downloads

Following acceptance of PEP 438 by the Python community, we have moved DEAP's source releases on PyPI.

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

Documentation

See the DEAP User's Guide for DEAP documentation.

In order to get the tip documentation, change directory to the doc subfolder and type in make html, the documentation will be under _build/html. You will need Sphinx to build the documentation.

Notebooks

Also checkout our new notebook examples. Using Jupyter notebooks you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

jupyter notebook

Installation

We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.

pip install deap

The latest version can be installed with

pip install git+https://github.com/DEAP/[email protected]

If you wish to build from sources, download or clone the repository and type

python setup.py install

Build Status

DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

Requirements

The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3. The installation procedure automatically translates the source to Python 3 with 2to3.

Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP. More examples are provided here.

import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)

How to cite DEAP

Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}

Publications on DEAP

  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. Paper
  • Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. Paper
  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. Paper

Projects using DEAP

  • Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  • Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  • S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  • B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  • Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  • Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  • Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  • Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  • Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  • Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  • Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  • J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  • V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  • M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012.
  • M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  • M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  • Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  • Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  • DEAP is used in TPOT, an open source tool that uses genetic programming to optimize machine learning pipelines.
  • DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  • DEAP is an optional dependency for PyXRD, a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  • DEAP is used in glyph, a library for symbolic regression with applications to MLC.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.

Owner
Distributed Evolutionary Algorithms in Python
Distributed Evolutionary Algorithms in Python
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023