Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Overview

Reducing Underflow in Mixed Precision Training by Gradient Scaling

Python Package using Conda Code style: black codecov Total alerts Language grade: Python

This project implements the gradient scaling method to improve the performance of mixed precision training.

The old repository: https://github.com/ada-loss/ada-loss

@inproceedings{ijcai2020-404,
  title     = {Reducing Underflow in Mixed Precision Training by Gradient Scaling},
  author    = {Zhao, Ruizhe and Vogel, Brian and Ahmed, Tanvir and Luk, Wayne},
  booktitle = {Proceedings of the Twenty-Ninth International Joint Conference on
               Artificial Intelligence, {IJCAI-20}},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},             
  editor    = {Christian Bessiere}	
  pages     = {2922--2928},
  year      = {2020},
  month     = {7},
  note      = {Main track}
  doi       = {10.24963/ijcai.2020/404},
  url       = {https://doi.org/10.24963/ijcai.2020/404},
}

Introduction

Loss scaling is a technique that scales up loss values to mitigate underflow caused by low precision data representation in backpropagated activation gradients. The original implementation uses a fixed loss scale value predetermined before training starts for all layers, which may not be optimal since the statistics of gradients change across layers and training epochs. Instead, our method calculates the loss scale value for each layer based on their runtime statistics.

Installation

We are using Anaconda to manage package dependencies:

conda create -f environment.yml
conda activate ada_loss

To install this project, please consider using this command:

pip install -e . # in the project root

Project structure

The structure of this project is as follows: the core of the adaptive loss scaling method is implemented in the ada_loss package; chainerlp provides the implementation of some baseline models; and models includes third party implementation of more complicated baseline models.

Usage

Example usage for chainer (other frameworks will be released later):

from ada_loss.chainer import AdaLossScaled
from ada_loss.chainer import transforms

# transform your link to support adaptive loss scaling
link = AdaLossScaled(link, transforms=[
    transforms.AdaLossTransformLinear(),
    transforms.AdaLossTransformConvolution2D(),
    # ...
])

It tries to convert links within the given link to ones that supports adaptive loss scaling based on the provided list of transforms. Adaptive loss scaled links are located under ada_loss.chainer.links. Transforms are extended based on AdaLossTransform in ada_loss.chainer.transforms.base and stored under ada_loss.chainer.transforms. For now, users are required to go through their link and specify explicitly transforms that should be taken.

Examples

Examples are located here.

Testing

Tests can be launched by calling pytest. Some tests are specified to be run on GPUs.

Owner
Ruizhe Zhao
Linking fire @ICComputing
Ruizhe Zhao
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020