This is a JAX implementation of Neural Radiance Fields for learning purposes.

Overview

learn-nerf

This is a JAX implementation of Neural Radiance Fields for learning purposes.

I've been curious about NeRF and its follow-up work for a while, but don't have much time to explore it. I learn best by doing, so I'll be implementing stuff here to try to get a feel for it.

Usage

The steps to using this codebase are as follows:

  1. Generate a dataset - run a simple Go program to turn any .stl 3D model into a series of rendered camera views with associated metadata.
  2. Train a model - install the Python dependencies and run the training script.
  3. Render a novel view - render a novel view of the object using a model.

Generating a dataset

I use a simple format for storing rendered views of the scene. Each frame is stored as a PNG file, and each PNG has an accompanying JSON file describing the camera view.

For easy experimentation, I created a Go program to render an arbitrary .stl file as a collection of views in the supported data format. To run this program, install Go and run go get . inside of simple_dataset/ to get the dependencies. Next, run

$ go run . /path/to/model.stl data_dir

This will create a directory data_dir containing rendered views of /path/to/model.stl.

Training a model

First, install the learn_nerf package by running pip install -e . inside this repository. You should separately make sure jax and Flax are installed in your environment.

The training script is learn_nerf/scripts/train_nerf.py. Here's an example of running this script:

python learn_nerf/scripts/train_nerf.py \
    --lr 1e-5 \
    --batch_size 1024 \
    --save_path model_weights.pkl \
    /path/to/data_dir

This will periodically save model weights to model_weights.pkl. The script may get stuck on training... while it shuffles the dataset and compiles the training graph. Wait a minute or two, and losses should start printing out as training ramps up.

If you get a Segmentation fault on CPU, this may be because you don't have enough memory to run batch size 1024--try something lower.

Render a novel view

To render a view from a trained NeRF model, use learn_nerf/scripts/render_nerf.py. Here's an example of the usage:

python learn_nerf/scripts/render_nerf.py \
    --batch_size 1024 \
    --model_path model_weights.pkl \
    --width 128 \
    --height 128 \
    /path/to/data_dir/0000.json \
    output.png

In the above example, we will render the camera view described by /path/to/data_dir/0000.json. Note that the camera view can be from the training set, but doesn't need to be as long as its in the correct JSON format.

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022