3D cascade RCNN for object detection on point cloud

Overview

3D Cascade RCNN

This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds.

We designed a 3D object detection model on point clouds by:

  • Presenting a simple yet effective 3D cascade architecture
  • Analyzing the sparsity of the point clouds and using point completeness score to re-weighting training samples. Following is detection results on Waymo Open Dataset.

Results on KITTI

Easy Car Moderate Car Hard Car
AP 11 90.05 86.02 79.27
AP 40 93.20 86.19 83.48

Results on Waymo

Overall Vehicle 0-30m Vehicle 30-50m Vehicle 50m-Inf Vehicle
LEVEL_1 mAP 76.27 92.66 74.99 54.49
LEVEL_2 mAP 67.12 91.95 68.96 41.82

Installation

  1. Requirements. The code is tested on the following environment:
  • Ubuntu 16.04 with 4 V100 GPUs
  • Python 3.7
  • Pytorch 1.7
  • CUDA 10.1
  • spconv 1.2.1
  1. Build extensions
python setup.py develop

Getting Started

Prepare for the data.

Please download the official KITTI dataset and generate data infos by following command:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/kitti_dataset.yaml

The folder should be like:

data
├── kitti
│   │── ImageSets
│   │── training
│   │   ├──calib & velodyne & label_2 & image_2
│   │── testing
│   │   ├──calib & velodyne & image_2
|   |── kitti_dbinfos_train.pkl
|   |── kitti_infos_train.pkl
|   |── kitti_infos_val.pkl

Training and evaluation.

The configuration file is in tools/cfgs/3d_cascade_rcnn.yaml, and the training scripts is in tools/scripts.

cd tools
sh scripts/3d-cascade-rcnn.sh

Test a pre-trained model

The pre-trained KITTI model is at: model. Run with:

cd tools
sh scripts/3d-cascade-rcnn_test.sh

The evaluation results should be like:

2021-08-10 14:06:14,608   INFO  Car [email protected], 0.70, 0.70:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:90.6405, 89.0829, 88.4391
3d   AP:90.0468, 86.0168, 79.2661
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.70, 0.70:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:96.3107, 92.4128, 89.9473
3d   AP:93.1961, 86.1857, 83.4783
aos  AP:99.13, 95.65, 93.03
Car [email protected], 0.50, 0.50:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:98.0539, 97.1877, 89.7716
3d   AP:97.9921, 90.1001, 89.7393
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.50, 0.50:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:99.1943, 97.8180, 95.5420
3d   AP:99.1717, 95.8046, 95.4500
aos  AP:99.13, 95.65, 93.03

Acknowledge

The code is built on OpenPCDet and Voxel R-CNN.

Owner
Qi Cai
Qi Cai
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022