A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

Related tags

Deep LearningA-ESRGAN
Overview

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators

The authors are hidden for the purpose of double blind in the process of review.

Main idea

Introduce attention U-net into the field of blind real world image super resolution. We aims to provide a super resolution method with sharper result and less distortion.

Sharper:

Less distortion:

Network Architecture

The overall architecture of the A-ESRGAN, where the generator is adopted from ESRGAN:

The architecture of a single attention U-net discriminator:

The attention block is modified from 3D attention U-net's attention gate:

Attention Map

We argue it is the attention map that plays the main role in improving the quality of super resolution images. To support our idea, we visualize how the attention coefficients changes in time and space.

We argue that during the training process the attention will gradually focus on regions where color changes abruptly, i.e. edges. And attention layer in different depth will give us edges of different granularity.

Attention coefficients changes across time.

Attention coefficients changes across space.

Multi Scale

Multi scale discriminator has to learn whether parts of the image is clear enough from different receptive fields. From this perspective, different discriminator can learn complementary knowledge. From the figure below, normal discriminator learn to focus on edges, while down-sampled discriminator learn patch-like patterns such as textures.

Thus, comparing with the single attention u-net discriminator, multi-scale u-net discriminator can generate more realistic and detailed images.

Better Texture:

Test Sets

The datasets for test in our A-ESRGAN model are the standard benchmark datasets Set5, Set14, BSD100, Sun-Hays80, Urban100. Noted that we directly apply 4X super resolution to the original real world images and use NIQE to test the perceptual quality of the result. As shown in the figure below, these 5 datasets have covered a large variety of images.

A combined dataset can be find in DatasetsForSR.zip.

We compare with ESRGAN, RealSR, BSRGAN, RealESRGAN on the above 5 datasets and use NIQE as our metrics. The result can be seen in the table below:

Note a lower NIQE score shows a better perceptual quality.

Quick Use

Inference Script

! We now only provides 4X super resolution now.

Download pre-trained models: A-ESRGAN-Single.pth to the experiments/pretrained_models.

wget https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Single.pth

Inference:

python inference_aesrgan.py --model_path=experiments/pretrained_models/A_ESRGAN_Single.pth --input=inputs

Results are in the results folder

NIQE Script

The NIQE Script is used to give the Mean NIQE score of a certain directory of images.

Cacluate NIQE score:

cd NIQE_Script
python niqe.py --path=../results

Visualization Script

The Visualization Script is used to visualize the attention coefficient of each attention layer in the attention based U-net discriminator. It has two scripts. One script discriminator_attention_visual(Single).py is used to visualize how the attention of each layer is updated during the training process on a certain image. Another Script combine.py is used to combine the heat map together with original image.

Generate heat maps:

First download single.zip and unzip to experiments/pretrained_models/single

cd Visualization_Script
python discriminator_attention_visual(Single).py --img_path=../inputs/img_015_SRF_4_HR.png

The heat maps will be contained in Visualization_Script/Visual

If you want to see how the heat map looks when combining with the original image, run:

python combine.py --img_path=../inputs/img_015_SRF_4_HR.png

The combined images will be contained in Visualization_Script/Combined

! Multi-scale discriminator attention map visualization:

Download multi.zip and unzip to experiments/pretrained_models/multi

Run discriminator_attention_visual(Mulit).py similar to discriminator_attention_visual(Single).py.

!See what the multi-scale discriminator output

Run Multi_discriminator_Output.py and you could see the visualization of pixel-wise loss from the discriminators.

! Note we haven't provided a combined script for multi attention map yet.

Model_Zoo

The following models are the generators, used in the A-ESRGAN

The following models are discriminators, which are usually used for fine-tuning.

The following models are the checkpoints of discriminators during A-ESRGAN training process, which are provided for visualization attention.

Training and Finetuning on your own dataset

We follow the same setting as RealESRGAN, and a detailed guide can be found in Training.md.

Acknowledgement

Our implementation of A-ESRGAN is based on the BasicSR and Real-ESRGAN.

You might also like...
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

[CVPR 2022] Official PyTorch Implementation for
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Comments
  • About the pre-trained model

    About the pre-trained model

    Hi, is the A-ESRGAN-multi pertained model available?

    the link below seems broken.

    https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Multi.pth

    opened by ShiinaMitsuki 1
  • some error

    some error

    /media/xyt/software/anaconda3/envs/basicSR/bin/python /media/xyt/data/github/SR/code/A-ESRGAN/train.py -opt options/train_aesrgan_x4plus.yml --debug 2022-02-09 18:17:12,962 INFO: Dataset [RealESRGANDataset] - DF2K is built. 2022-02-09 18:17:12,962 INFO: Training statistics: Number of train images: 500 Dataset enlarge ratio: 1 Batch size per gpu: 6 World size (gpu number): 1 Require iter number per epoch: 84 Total epochs: 4762; iters: 400000. Traceback (most recent call last): File "/media/xyt/data/github/SR/code/A-ESRGAN/train.py", line 11, in train_pipeline(root_path) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/train.py", line 128, in train_pipeline model = build_model(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/models/init.py", line 27, in build_model model = MODEL_REGISTRY.get(opt['model_type'])(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/utils/registry.py", line 65, in get raise KeyError(f"No object named '{name}' found in '{self._name}' registry!") KeyError: "No object named 'RealESRGANModel' found in 'model' registry!"

    opened by xiayutong 1
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022