An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Overview

Transformer-in-Transformer Twitter

PyPI Open In Colab Upload Python Package Lint Code Base Code style: black

GitHub License GitHub stars GitHub followers Twitter Follow

An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local patches. Transformer in Transformer uses pixel level attention paired with patch level attention for image classification, in TensorFlow.

PyTorch Implementation

Installation

Run the following to install:

pip install tnt-tensorflow

Developing tnt-tensorflow

To install tnt-tensorflow, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/Transformer-in-Transformer.git
# or clone your own fork

cd tnt
pip install -e .[dev]

Usage

import tensorflow as tf
from tnt import TNT

tnt = TNT(
    image_size=256,  # size of image
    patch_dim=512,  # dimension of patch token
    pixel_dim=24,  # dimension of pixel token
    patch_size=16,  # patch size
    pixel_size=4,  # pixel size
    depth=5,  # depth
    num_classes=1000,  # output number of classes
    attn_dropout=0.1,  # attention dropout
    ff_dropout=0.1,  # feedforward dropout
)

img = tf.random.uniform(shape=[5, 3, 256, 256])
logits = tnt(img) # (5, 1000)

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@misc{han2021transformer,
      title={Transformer in Transformer}, 
      author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
      year={2021},
      eprint={2103.00112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • Add Unit Tests

    Add Unit Tests

    The tests should check for the rank and shape of the output tensors, the test should override tf.test.TestCase base class.

    • [x] #15
    • [x] #16
    • [x] #18
    • [x] #17

    Feel free to take inspiration from:

    • https://github.com/Rishit-dagli/Fast-Transformer/blob/main/fast_transformer/test_fast_transformer.py
    • For parametrization feel free to follow https://stackoverflow.com/a/34094/11878567, can be used in the exact same way with subTest in TensorFlow
    enhancement good first issue 
    opened by Rishit-dagli 3
  • Update Workflows to run tests

    Update Workflows to run tests

    This issue follows #11

    Update GitHub Workflows to:

    • [ ] Run Tests before uploading to PyPI
    • [ ] Create a workflow to run tests on commits

    Feel free to take inspiration from https://github.com/Rishit-dagli/Fast-Transformer/tree/main/.github/workflows

    enhancement good first issue 
    opened by Rishit-dagli 0
  • Creates an Attention layer

    Creates an Attention layer

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    

    Closes #3

    opened by Rishit-dagli 0
  • Put together a TNT class

    Put together a TNT class

    Verify shapes:

    tnt = TNT(
        image_size=256,  # size of image
        patch_dim=512,  # dimension of patch token
        pixel_dim=24,  # dimension of pixel token
        patch_size=16,  # patch size
        pixel_size=4,  # pixel size
        depth=5,  # depth
        num_classes=1000,  # output number of classes
        attn_dropout=0.1,  # attention dropout
        ff_dropout=0.1,  # feedforward dropout
    )
    
    img = tf.random.uniform(shape=[1, 3, 256, 256])
    print(tnt(img).shape)
    
    # (1, 1000)
    ```
    opened by Rishit-dagli 0
  • Create an Attention layerr

    Create an Attention layerr

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    
    opened by Rishit-dagli 0
  • Create a PreNorm layer

    Create a PreNorm layer

    Verify output shapes from this layer:

    import tensorflow as tf
    PreNorm(dim=1, fn=tf.keras.layers.Dense(5))(tf.random.normal([10, 1]))
    
    # <tf.Tensor: shape=(10, 1), dtype=float32,
    
    opened by Rishit-dagli 0
Releases(v0.2.0)
  • v0.2.0(Feb 2, 2022)

    This is an interesting release for the project, including a pre-trained model on ImageNet, reproducibility of paper results, tests, and end-to-end training.

    ✅ Bug Fixes / Improvements

    • Create an end-to-end training example demonstrating how to train a TNT model for image classification through a custom training loop on the TF Flowers dataset (#14)
    • Pre-trained model to reproduce the paper results have been made available (in this release as well as on TensorFlow Hub)
    • Create an off-the-shelf inference example, that highlights how you can directly use the pre-trained model made available
    • Unit Tests for the Attention class (#19)
    • Unit Tests for the main TNT class (#20)

    Full Changelog: https://github.com/Rishit-dagli/Transformer-in-Transformer/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
  • v0.1.0(Dec 3, 2021)

    This is the initial release of TNT TensorFlow and implements Transformers in Transformers as a subclassed TensorFlow model.

    Classes

    • Attention: Implements attention as a TensorFlow Keras Layer making some modifications.
    • PreNorm: Normalize the activations of the previous layer for each given example in a batch independently and apply some function to it, implemented as a TensorFlow Keras Layer.
    • FeedForward: Create a FeedForward neural net with two Dense layers and GELU activation, implemented as a TensorFlow Keras Layer.
    • TNT: Implements the Transformers in Transformers model using all the other classes, and converts to logits. Implemented as a TensorFlow Keras Model.
    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022