PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Overview

Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Julian Zaïdi, Hugo Seuté, Benjamin van Niekerk, Marc-André Carbonneau

In our recent paper we propose Daft-Exprt, a multi-speaker acoustic model advancing the state-of-the-art on inter-speaker and inter-text prosody transfer. This improvement is achieved using FiLM conditioning layers, alongside adversarial training that encourages disentanglement between prosodic information and speaker identity. The acoustic model inherits attractive qualities from FastSpeech 2, such as fast inference and local prosody attributes prediction for finer grained control over generation. Moreover, results indicate that adversarial training effectively discards speaker identity information from the prosody representation, which ensures Daft-Exprt will consistently generate speech with the desired voice.

Experimental results show that Daft-Exprt accurately transfers prosody, while yielding naturalness comparable to state-of-the-art expressive models. Visit our demo page for audio samples related to the paper experiments.

Pre-trained model

Full disclosure: The model provided in this repository is not the same as in the paper evaluation. The model of the paper was trained with proprietary data which prevents us to release it publicly.
We pre-train Daft-Exprt on a combination of LJ speech dataset and the emotional speech dataset (ESD) from Zhou et al.
Visit the releases of this repository to download the pre-trained model and to listen to prosody transfer examples using this same model.

Table of Contents

Installation

Local Environment

Requirements:

We recommend using conda for python environment management, for example download and install Miniconda.
Create your python environment and install dependencies using the Makefile:

  1. conda create -n daft_exprt python=3.8 -y
  2. conda activate daft_exprt
  3. cd environment
  4. make

All Linux/Conda/Python dependencies will be installed by the Makefile, and the repository will be installed as a pip package in editable mode.

Docker Image

Requirements:

Build the Docker image using the associated Dockerfile:

  1. docker build -f environment/Dockerfile -t daft_exprt .

Quick Start Example

Introduction

This quick start guide will illustrate how to use the different scripts of this repository to:

  1. Format datasets
  2. Pre-process these datasets
  3. Train Daft-Exprt on the pre-processed data
  4. Generate a dataset for vocoder fine-tuning
  5. Use Daft-Exprt for TTS synthesis

All scripts are located in scripts directory.
Daft-Exprt source code is located in daft_exprt directory.
Config parameters used in the scripts are all instanciated in hparams.py.

As a quick start example, we consider using the 22kHz LJ speech dataset and the 16kHz emotional speech dataset (ESD) from Zhou et al.
This combines a total of 11 speakers. All speaker datasets must be in the same root directory. For example:

/data_dir
    LJ_Speech
    ESD
        spk_1
        ...
        spk_N

In this example, we use the docker image built in the previous section:

docker run -it --gpus all -v /path/to/data_dir:/workdir/data_dir -v path/to/repo_dir:/workdir/repo_dir IMAGE_ID

Dataset Formatting

The source code expects the specific tree structure for each speaker data set:

/speaker_dir
    metadata.csv
    /wavs
        wav_file_name_1.wav
        ...
        wav_file_name_N.wav

metadata.csv must be formatted as follows:

wav_file_name_1|text_1
...
wav_file_name_N|text_N

Given each dataset has its own nomenclature, this project does not provide a ready-made universal script.
However, the script format_dataset.py already proposes the code to format LJ and ESD:

python format_dataset.py \
    --data_set_dir /workdir/data_dir/LJ_Speech \
    LJ

python format_dataset.py \
    --data_set_dir /workdir/data_dir/ESD \
    ESD \
    --language english

Data Pre-Processing

In this section, the code will:

  1. Align data using MFA
  2. Extract features for training
  3. Create train and validation sets
  4. Extract features stats on the train set for speaker standardization

To pre-process all available formatted data (i.e. LJ and ESD in this example):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    pre_process

This will pre-process data using the default hyper-parameters that are set for 22kHz audios.
All outputs related to the experiment will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME.
You can also target specific speakers for data pre-processing. For example, to consider only ESD speakers:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    pre_process

The pre-process function takes several arguments:

  • --features_dir: absolute path where pre-processed data will be stored. Default to /workdir/repo_dir/datasets
  • --proportion_validation: Proportion of examples that will be in the validation set. Default to 0.1% per speaker.
  • --nb_jobs: number of cores to use for python multi-processing. If set to max, all CPU cores are used. Default to 6.

Note that if it is the first time that you pre-process the data, this step will take several hours.
You can decrease computing time by increasing the --nb_jobs parameter.

Training

Once pre-processing is finished, launch training. To train on all pre-processed data:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    train

Or if you targeted specific speakers during pre-processing (e.g. ESD speakers):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    train

All outputs related to the experiment will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME.

The train function takes several arguments:

  • --checkpoint: absolute path of a Daft-Exprt checkpoint. Default to ""
  • --no_multiprocessing_distributed: disable PyTorch multi-processing distributed training. Default to False
  • --world_size: number of nodes for distributed training. Default to 1.
  • --rank: node rank for distributed training. Default to 0.
  • --master: url used to set up distributed training. Default to tcp://localhost:54321.

These default values will launch a new training starting at iteration 0, using all available GPUs on the machine.
The code supposes that only 1 GPU is available on the machine.
Default batch size and gradient accumulation hyper-parameters are set to values to reproduce the batch size of 48 from the paper.

The code also supports tensorboard logging. To display logging outputs:
tensorboard --logdir_spec=EXPERIMENT_NAME:/workdir/repo_dir/trainings/EXPERIMENT_NAME/logs

Vocoder Fine-Tuning

Once training is finished, you can create a dataset for vocoder fine-tuning:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    fine_tune \
    --checkpoint CHECKPOINT_PATH

Or if you targeted specific speakers during pre-processing and training (e.g. ESD speakers):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    fine_tune \
    --checkpoint CHECKPOINT_PATH

Fine-tuning dataset will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME/fine_tuning_dataset.

TTS Synthesis

For an example on how to use Daft-Exprt for TTS synthesis, run the script synthesize.py.

python synthesize.py \
    --output_dir OUTPUT_DIR \
    --checkpoint CHECKPOINT

Default sentences and reference utterances are used in the script.

The script also offers the possibility to:

  • --batch_size: process batch of sentences in parallel
  • --real_time_factor: estimate Daft-Exprt real time factor performance given the chosen batch size
  • --control: perform local prosody control

Citation

@article{Zaidi2021,
abstract = {},
journal = {arXiv},
arxivId = {2108.02271},
author = {Za{\"{i}}di, Julian and Seut{\'{e}}, Hugo and van Niekerk, Benjamin and Carbonneau, Marc-Andr{\'{e}}},
eprint = {2108.02271},
title = {{Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis}},
url = {https://arxiv.org/pdf/2108.02271.pdf},
year = {2021}
}

Contributing

Any contribution to this repository is more than welcome!
If you have any feedback, please send it to [email protected].

© [2021] Ubisoft Entertainment. All Rights Reserved

Comments
  • Error while running Pretrained model

    Error while running Pretrained model

    Hi @julianzaidi, I pointed to that file in checkpoint argument (archive/data.pkl) but got an unpickle error. If you could tell how to run this pretrained model, it would be so kind of you.

    python synthesize.py --output_dir OUTPUT_DIR --checkpoint "archive/data.pkl"

    Traceback (most recent call last): File "synthesize.py", line 148, in file_names, refs, speaker_ids = synthesize(args, use_griffin_lim=True)

    File "synthesize.py", line 38, in synthesize checkpoint_dict = torch.load(args.checkpoint, map_location=f'cuda:{0}')

    File "/home/saomya/miniconda3/envs/daft_exprt/lib/python3.8/site-packages/torch/serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)

    File "/home/saomya/miniconda3/envs/daft_exprt/lib/python3.8/site-packages/torch/serialization.py", line 777, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args)

    _pickle.UnpicklingError: A load persistent id instruction was encountered, but no persistent_load function was specified. Screenshot from 2022-10-26 15-19-43

    opened by anushvst 12
  • ldd version

    ldd version

    Hi, when I run the python training.py pre_process, it prompts Exception: REAPER binary -- Unsupported ldd version: 2.27 < 2.29. However, my machine could not update the glibc version. Are there any alternatives? Thanks! image

    opened by inconnu11 3
  • How to run the Pre-trained model

    How to run the Pre-trained model

    Hi @julianzaidi, we tried to run your pre-trained model. However, we are unable to get clarification on the values of the parameters that we need to pass, for instance, specific checkpoints. Also, we received the CUDA out of memory issues too. We would like to run the pre-trained model in Windows instead of Linux. How could we do this?

    opened by saomya-seasia 2
  • Automatic aligner like in FastPitch?

    Automatic aligner like in FastPitch?

    Hello! Do you think it's possible to incorporate automatic aligner as in FastPitch (https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch), as described in paper "One TTS Alignment To Rule Them All"? This aligner essentially only requires graphemes or phonemes and learns with the rest of the network. It would allow to omit Montreal Forced Aligner preprocessing and decrease preprocessing time. If it's possible, what should be changed to allow the use of such an aligner?

    opened by juliakorovsky 2
  • Position-dependent prosody transfer result

    Position-dependent prosody transfer result

    It seem to obtain position-dependent prosody transfer result by utterance-level embedding. Why location information could be embedded in the representation obtained by mean pool operation?

    opened by hyzhan 2
  • np.frombuffer

    np.frombuffer

    Hi, when I extract the f0 using the reaper , it shows the error "ValueError: buffer size must be a multiple of element size ". Could you please help me out?

    opened by inconnu11 0
  • Able to train on LJ & ESD dataset but error in training the model on custom dataset

    Able to train on LJ & ESD dataset but error in training the model on custom dataset

    Hi @julianzaidi @macarbonneau, hope you guys are doing well. Just want to ask few queries regarding the training aspect.

    • I tried to train the model on my voice

    • Formatted the dataset successfully

    • In pre_processing step, got the error: ValueError: zero-size array to reduction operation minimum which has no identity

    • Created directories in this format: work_dir/data_dir/LJ_Speech/wavs

    • In wavs folder i gave around 10 audio clips around 2-3 minute length

    • Prepared the metadata according to the instructions in the repository

    • Should we use short audio clips to train the model?

    Any suggestion regarding this will be very kind of you.

    opened by anushvst 0
  • Problems regarding pretrained model of the daft exprt model

    Problems regarding pretrained model of the daft exprt model

    Hi @julianzaidi @macarbonneau, hope you guys are doing well. Just want to ask few queries regarding the model.

    • I want to use the model such that it can generate audio in a Hip Hop music artist's voice (he passed away few years ago) giving a certain prosody in reference voice and lyrics in the text.

    • Curious about the answers to these questions as i am trying to get some audio clips > than 30 seconds

    When i run the pretrained model giving reference voice and text, it sounds robotic/unnatural.

    • I gave my reference voice (24 sec)

    • Text: "Hello John, my name is Don with marketing dot com and I actually just recently came across micro soft and I thought there were some interesting things that we might be able to do together. Um, we do a lot of work in retail and I'm actually coming to New York next week for a conference. So, if you're around I would love to meet with you, buy you a cup of coffee and tell you a little bit more about what we're thinking that we can do for you. Alright, hope to see you soon."

    • got this output

    https://user-images.githubusercontent.com/92500349/201936746-6b7760a1-fbca-465a-ab27-96ae648564a8.mp4

    1. Also in the ouput voice, it generated robotic or un-natural voice till 18 seconds. After that the model generated distorted voice. Any idea about the distortion?

    2. Should we give the model short reference voice and text?

    3. Can the model produce the output voice greater than 1 minute or it produces short voice?

    4. Is punctuation necessary? also will it work if we give "7" instead of "seven" in text file?

    5. Want to clarify whose voice the model produces in the output: the reference speaker voice or the model's voice on which it is trained (LJ, ESD)?

    6. I am still getting the unnatural (but better than previous) voice after training on the LJ dataset. Any tips how to get the natural voice output?

    • Reference voice - LJ's voice
    • Text: Hello John, my name is Don with marketing dot com. I actually just recently came across microsoft.
    • The output i got was:

    https://user-images.githubusercontent.com/92500349/202087380-1858ecab-b32f-4db7-9021-885a185222e0.mp4

    • Is it because the model arcitecture used in generating audios in demo page is different than the model architecture present in the repository?
    • Any methods to reduce noise in the output voice?
    opened by anushvst 0
Releases(1.0.0)
  • 1.0.0(Sep 10, 2021)

    Release contents:

    • Daft-Exprt model pre-trained on LJ Speech Dataset and the Emotional Speech Dataset from Zhou et al.
    • Prosody transfer examples synthesized using this pre-trained model and Griffin-Lim algorithm

    Full disclosure: The model provided in this release is not the same as in the paper evaluation. The model of the paper was trained with proprietary data which prevents us to release it publicly.

    Source code(tar.gz)
    Source code(zip)
    DaftExprt_LJ_ESD_22kHz(168.73 MB)
    demo.zip(13.51 MB)
Owner
Ubisoft
Ubisoft open source projects.
Ubisoft
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023