Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

Overview

English: README-EN.md

VRCWatch

VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。

使い方

VRChat 起動前、もしくは起動中に run.bat を実行してください。 または VRCWatch ディレクトリをカレントディレクトリにした状態で python3 -m vrcwatch を実行してください。

// TODO: 加筆する

Avatar Parameter

このプログラムでは VRChat の OSC (OpenSound Control) 機能を利用して、 以下のパラメータを Avatar Parameter として送信します。 全てのパラメータは必ず DateTime から始まります。

  • DateTimeYear
    • 型: 整数 (int)
    • グレゴリオ暦での年数です。
    • 2022 年であれば、2022 となります。
  • DateTimeMonth
    • 型: 整数 (int)
    • グレゴリオ暦での月です。1 以上 12 以下の整数を取ります。
    • 1 月あれば、1 を、2 月であれば 2 を、12 月であれば 12 を取ります。
  • DateTimeDay
    • 型: 整数 (int)
    • 当月内での日数です。1 以上 31 以下の整数を取ります。
    • 1 月 23 日であれば 23 を、2 月 29 日であれば、29 を、11 月 30 日であれば 30 を取ります。
  • DateTimeWeekDay
    • 型: 整数 (int)
    • 1 週間内での曜日です。0 以上 6 以下の整数を取ります。
    • 月曜日は 0 を、火曜日は 1 を、水曜日は 2 を、土曜日は 5 を、日曜日は 6 を取ります。
  • DateTimeHour
    • 型: 整数 (int)
    • 1 日を 24 分割している、時 (じ) です。0 以上 23 以下の整数を取ります。
    • 午前 0 時 12 分 (0:12) であれば 0 を、午後 3 時 45 分 (15:45) であれば 15 を、午後 11 時 59 分 (23:59) であれば 23 を取ります。
  • DateTimeMinute
    • 型: 整数 (int)
    • 1 時間を 60 分割している、分です。0 以上 59 以下の整数を取ります。
    • 午前 1 時 00 分 (1:00) であれば 0 を、午後 2 時 34 分 (14:34) であれば 34 を、午後 11 時 59 分 (23:59) であれば 59 を取ります。
  • DateTimeSecond
    • 型: 整数 (int)
    • 1 分間を 60 分割している、秒です。0 以上 59 以下の整数を取ります。
    • 午前 3 時 21 分 0 秒 (3:21:00) であれば 0 を、午後 1 時 23 分 45 秒 (13:23:45) であれば 45 を、午後 11 時 59 分 59 秒 (23:59:59) であれば 59 を取ります。
  • DateTimeHourF
    • 型: 実数 (float)
    • DateTimeHour を 24 で割った、1/24 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.04167 (= 1.0 / 24) を、午後 11 時 59 分 (23:59) であれば約 0.95833 (= 23.0 / 24) を取ります。
  • DateTimeMinuteF
    • 型: 実数 (float)
    • DateTimeMinute を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.38333 (= 23.0 / 60) を、午後 11 時 59 分 (23:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeSecondF
    • 型: 実数 (float)
    • DateTimeSecond を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 4 時 32 分 1 秒 (3:21:01) であれば約 0.01667 (= 1.0 / 60) を、午後 2 時 34 分 59 秒 (14:24:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeDayTime
    • 型: 実数 (float)
    • 1 日の何割だけ時間が進んだかを表す実数です。0 以上 1 未満を取ります。
    • 午前 0 時 0 分 0 秒 (0:00:00) であれば 0.0 を、午後 12 時 59 分 59 秒 (23:59:59) を約 0.99999 を取ります。

Copyright / License

Copyright (c) 2022 Kosaki Mezumona

MIT License, see LICENSE.

Owner
Kosaki Mezumona
I'm Japanese programmer. I've studied about information technology and researched the aspect-oriented programming at a university.
Kosaki Mezumona
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023