Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

Overview

1 Meta-FDMIxup

Repository for the paper :

Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021)

paper

News! the representation video loaded in 2021/10/06 in Bilibili

News! the representation video loaded in 2021/10/10 in Youtube

image

If you have any questions, feel free to contact me. My email is [email protected].

2 setup and datasets

2.1 setup

A anaconda envs is recommended:

conda create --name py36 python=3.6
conda activate py36
conda install pytorch torchvision -c pytorch
pip3 install scipy>=1.3.2
pip3 install tensorboardX>=1.4
pip3 install h5py>=2.9.0

Then, git clone our repo:

git clone https://github.com/lovelyqian/Meta-FDMixup
cd Meta-FDMixup

2.2 datasets

Totally five datasets inculding miniImagenet, CUB, Cars, Places, and Plantae are used.

  1. Following FWT-repo to download and setup all datasets. (It can be done quickly)

  2. Remember to modify your own dataset dir in the 'options.py'

  3. Under our new setting, we randomly select $num_{target}$ labeled images from the target base set to form the auxiliary set. The splits we used are provided in 'Sources/'.

3 pretrained ckps

We provide several pretrained ckps.

You can download and put them in the 'output/pretrained_ckps/'

3.1 pretrained model trained on the miniImagenet

3.2 full model meta-trained on the target datasets

Since our method is target-set specific, we have to train a model for each target dataset.

Notably, as we stated in the paper, we use the last checkpoint for target dataset, while the best model on the validation set of miniImagenet is used for miniImagenet. Here, we provide the model of 'miniImagenet|CUB' as an example.

4 usage

4.1 network pretraining

python3 network_train.py --stage pretrain  --name pretrain-model --train_aug 

If you have downloaded our pretrained_model_399.tar, you can just skip this step.

4.2 pretrained model testing

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset miniImagenet --n_shot 5 

# test target dataset e.g. cub
python network_test.py --ckp_path output/checkpoints/pretrain-model/399.tar --stage pretrain --dataset cub --n_shot 5

you can test our pretrained_model_399.tar in the same way:

# test source dataset (miniImagenet)
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset miniImagenet --n_shot 5 


# test target dataset e.g. cub
python network_test.py --ckp_path output/pretrained_ckps/pretrained_model_399.tar --stage pretrain --dataset cub --n_shot 5

4.3 network meta-training

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cub --n_shot 5

# target set: Cars
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cars --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set cars --n_shot 5

# target set: Places
python3 network_train.py --stage metatrain --name metatrain-model-5shot-places --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set places --n_shot 5

# target set: Plantae
python3 network_train.py --stage metatrain --name metatrain-model-5shot-plantae --train_aug --warmup output/checkpoints/pretrain-model/399.tar --target_set plantae --n_shot 5

Also, you can use our pretrained_model_399.tar for warmup:

# traget set: CUB
python3 network_train.py --stage metatrain --name metatrain-model-5shot-cub --train_aug --warmup output/pretrained_ckps/pretrained_model_399.tar --target_set cub --n_shot 5

4.4 network testing

To test our provided full models:

# test target dataset (CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_399.tar --stage metatrain --dataset cub --n_shot 5 

# test target dataset (Cars)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cars_399.tar --stage metatrain --dataset cars --n_shot 5 

# test target dataset (Places)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset places --n_shot 5 

# test target dataset (Plantae)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_places_399.tar --stage metatrain --dataset plantae --n_shot 5 


# test source dataset (miniImagenet|CUB)
python network_test.py --ckp_path output/pretrained_ckps/full_model_5shot_target_cub_best_eval.tar --stage metatrain --dataset miniImagenet --n_shot 5 

To test your models, just modify the 'ckp-path'.

5 citing

If you find our paper or this code useful for your research, please cite us:

@article{fu2021meta,
  title={Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target Data},
  author={Fu, Yuqian and Fu, Yanwei and Jiang, Yu-Gang},
  journal={arXiv preprint arXiv:2107.11978},
  year={2021}
}

6 Note

Notably, our code is built upon the implementation of FWT-repo.

Owner
Fu Yuqian
Fu Yuqian
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023