An investigation project for SISR.

Overview

SISR-Survey

An investigation project for SISR.

This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution".

Purpose

Due to the pages and time limitation, it is impossible to introduce all SISR methods in the paper, and it is impossible to update the latest methods in time. Therefore, we use this project to assist our survey to cover more methods. This will be a continuously updated project! We hope it can help more researchers and promote the development of image super-resolution. Welcome more researchers to jointly maintain this project!

Abstract

Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency, reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field.

Taxonomy

Datasets

Benchmarks datasets for single-image super-resolution (SISR).

SINGLE-IMAGE SUPER-RESOLUTION

Reconstruction Efficiency Methods

Perceptual Quality Methods

Perceptual Quality Methods

Further Improvement Methods

DOMAIN-SPECIFIC APPLICATIONS

Real-World SISR

Remote Sensing Image Super-Resolution

Hyperspectral Image Super-Resolution

In contrast to human eyes that can only be exposed to visible light, hyperspectral imaging is a technique for collecting and processing information across the entire range of electromagnetic spectrum. The hyperspectral system is often compromised due to the limitations of the amount of the incident energy, hence there is a trade-off between the spatial and spectral resolution. Therefore, hyperspectral image super-resolution is studied to solve this problem.

[1] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

[2] Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network

[3] Hyperspectral Image Super-Resolution with Optimized RGB Guidance

[4] Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

[5] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

Light Field Image Super-Resolution

Light field (LF) camera is a camera that can capture information about the light field emanating from a scene and can provide multiple views of a scene. Recently, the LF image is becoming more and more important since it can be used for post-capture refocusing, depth sensing, and de-occlusion. However, LF cameras are faced with a trade-off between spatial and angular resolution. In order to solve this issue, SR technology is introduced to achieve a good balance between spatial and angular resolution.

[1] Light-field Image Super-Resolution Using Convolutional Neural Network

[2] LFNet: A novel Bidirectional Recurrent Convolutional Neural Network for Light-field Image Super-Resolution

[3] Spatial-Angular Interaction for Light Field Image Super-Resolution

[4] Light Field Image Super-Resolution Using Deformable Convolution

Face Image Super-Resolution

Face image super-resolution is the most famous field in which apply SR technology to domain-specific images. Due to the potential applications in facial recognition systems such as security and surveillance, face image super-resolution has become an active area of research.

[1] Learning Face Hallucination in the Wild

[2] Deep Cascaded Bi-Network for Face Hallucination

[3] Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

[4] Super-Identity Convolutional Neural Network for Face Hallucination

[5] Exemplar Guided Face Image Super-Resolution without Facial Landmarks

[6] Robust Facial Image Super-Resolution by Kernel Locality-Constrained Coupled-Layer Regression

Medical Image Super-Resolution

Medical imaging methods such as computational tomography (CT) and magnetic resonance imaging (MRI) are essential to clinical diagnoses and surgery planning. Hence, high-resolution medical images are desirable to provide necessary visual information of the human body. Recently, many methods have been proposed for medical image super-resolution

[1] Efficient and Accurate MRI Super-Resolution Using A Generative Adversarial Network and 3D Multi-Level Densely Connected Network

[2] CT-Image of Rock Samples Super Resolution Using 3D Convolutional Neural Network

[3] Channel Splitting Network for Single MR Image Super-Resolution

[4] SAINT: Spatially Aware Interpolation Network for Medical Slice Synthesis

Depth Map Super-Resolution

The depth map is an image or image channel that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The use of depth information of a scene is essential in many applications such as autonomous navigation, 3D reconstruction, human-computer interaction, and virtual reality. However, depth sensors, such as Microsoft Kinect and Lidar, can only provide depth maps of limited resolutions. Hence, depth map super-resolution has drawn more and more attention recently.

[1] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

[2] Atgv-net: Accurate Depth Super-Resolution

[3] Depth Map Super-Resolution by Deep Multi-Scale Guidance

[4] Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis

[5] Perceptual Deep Depth Super-Resolution

[6] Channel Attention based Iterative Residual Kearning for Depth Map Super-Resolution

Stereo Image Super-Resolution

The dual camera has been widely used to estimate depth information. Meanwhile, stereo imaging can also be applied in image restoration. In the stereo image pair, we have two images with disparity much larger than one pixel. Therefore, full use of these two images can enhance the spatial resolution.

[1] Enhancing the Spatial Resolution of Stereo Images Using A Parallax Prior

[2] Learning Parallax Attention for Stereo Image Super-Resolution

[3] Parallax Attention for Unsupervised Stereo Correspondence Learning

[4] Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution

[5] A Stereo Attention Module for Stereo Image Super-Resolution

[6] Symmetric Parallax Attention for Stereo Image Super-Resolution

[7] Deep Bilateral Learning for Stereo Image Super-Resolution

[8] Stereoscopic Image Super-Resolution with Stereo Consistent Feature

[9] Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation

RECONSTRUCTION RESULTS

PSNR/SSIM comparison of lightweight SISR models (the number of model parameters less than 1000K) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

PSNR/SSIM comparison of large SISR models (the number of model parameters more than 1M, M=million) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

Owner
Juncheng Li
Juncheng Li
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021