Rotation Robust Descriptors

Overview

RoRD

Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

Project Page | Paper link

pipeline

Evaluation and Datasets

Pretrained Models

Download models from Google Drive (73.9 MB) in the base directory.

Evaluating RoRD

You can evaluate RoRD on demo images or replace it with your custom images.

  1. Dependencies can be installed in a conda of virtualenv by running:
    1. pip install -r requirements.txt
  2. python extractMatch.py <rgb_image1> <rgb_image2> --model_file <path to the model file RoRD>
  3. Example:
    python extractMatch.py demo/rgb/rgb1_1.jpg demo/rgb/rgb1_2.jpg --model_file models/rord.pth
  4. This should give you output like this:

RoRD

pipeline

SIFT

pipeline

DiverseView Dataset

Download dataset from Google Drive (97.8 MB) in the base directory (only needed if you want to evaluate on DiverseView Dataset).

Evaluation on DiverseView Dataset

The DiverseView Dataset is a custom dataset consisting of 4 scenes with images having high-angle camera rotations and viewpoint changes.

  1. Pose estimation on single image pair of DiverseView dataset:
    1. cd demo
    2. python register.py --rgb1 <path to rgb image 1> --rgb2 <path to rgb image 2> --depth1 <path to depth image 1> --depth2 <path to depth image 2> --model_rord <path to the model file RoRD>
    3. Example:
      python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth
    4. This should give you output like this:

RoRD matches in perspective view

pipeline

RoRD matches in orthographic view

pipeline

  1. To visualize the registered point cloud, use --viz3d command:
    1. python register.py --rgb1 rgb/rgb2_1.jpg --rgb2 rgb/rgb2_2.jpg --depth1 depth/depth2_1.png --depth2 depth/depth2_2.png --model_rord ../models/rord.pth --viz3d

PointCloud registration using correspondences

pipeline

  1. Pose estimation on a sequence of DiverseView dataset:
    1. cd evaluation/DiverseView/
    2. python evalRT.py --dataset <path to DiverseView dataset> --sequence <sequence name> --model_rord <path to RoRD model> --output_dir <name of output dir>
    3. Example:
      1. python evalRT.py --dataset /path/to/preprocessed/ --sequence data1 --model_rord ../../models/rord.pth --output_dir out
    4. This would generate out folder containing predicted transformations and matching results in out/vis folder, containing images like below:

RoRD

pipeline

Training RoRD on PhotoTourism Images

  1. Training using rotation homographies with initialization from D2Net weights (Download base models as mentioned in Pretrained Models).

  2. Download branderburg_gate dataset that is used in the configs/train_scenes_small.txt from here(5.3 Gb) in phototourism folder.

  3. Folder stucture should be:

    phototourism/  
    ___ brandenburg_gate  
    ___ ___ dense  
    ___ ___	___ images  
    ___ ___	___ stereo  
    ___ ___	___ sparse  
    
  4. python trainPT_ipr.py --dataset_path <path_to_phototourism_folder> --init_model models/d2net.pth --plot

TO-DO

  • Provide VPR code
  • Provide combine training of RoRD + D2Net
  • Provide code for calculating error in Diverseview Dataset

Credits

Our base model is borrowed from D2-Net.

BibTex

If you use this code in your project, please cite the following paper:

@misc{rord2021,
      title={RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching}, 
      author={Udit Singh Parihar and Aniket Gujarathi and Kinal Mehta and Satyajit Tourani and Sourav Garg and Michael Milford and K. Madhava Krishna},
      year={2021},
      eprint={2103.08573},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022