An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

Related tags

Deep Learningiftopt
Overview

iftopt

An Implicit Function Theorem (IFT) optimizer for bi-level optimizations.

Requirements

  • Python 3.7+
  • PyTorch 1.x

Installation

$ pip install git+https://github.com/money-shredder/iftopt.git

Usage

Assuming a bi-level optimization of the form:

y* = argmin_{y} val_loss(x*, y), where x* = argmin_{x} train_loss(x, y).

To solve for the optimal x* and y* in the optimization problem, we can implement the following with iftopt:

from iftopt import HyperOptimizer
train_lr = val_lr = 0.1
# parameter to minimize the training loss
x = torch.nn.Parameter(...)
# hyper-parameter to minimize the validation loss
y = torch.nn.Parameter(...)
# training loss optimizer
opt = torch.optim.SGD([x], lr=train_lr)
# validation loss optimizer
hopt = HyperOptimizer(
    [y], torch.optim.SGD([y], lr=val_lr), vih_lr=0.1, vih_iterations=5)
# outer optimization loop for y
for _ in range(...):
    # inner optimization loop for x
    for _ in range(...):
        z = train_loss(x, y)
        # inner optimization step for x
        opt.zero_grad()
        z.backward()
        opt.step()
    # outer optimization step for y
    hopt.set_train_parameters([x])
    z = train_loss(x, y)
    hopt.train_step(z)
    v = val_loss(x, y)
    hopt.val_step(v)
    hopt.grad()
    hopt.step()

For a concrete simple example, please check out and run demo.py, where

train_loss = lambda x, y: (x + y) ** 2
val_loss = lambda x, y: x ** 2

with x = y = 1.0 initially. It will generate a video demo.mp4 showing the optimization trajectory in the animation below. Note that although the hyper-parameter y does not have a direct gradient w.r.t. the validation loss, iftopt can still minimize the validation loss by computing the hyper-gradient via implicit function theorem.

assets/demo.gif

Owner
The Money Shredder Lab
Accurate, Efficient and Robust DL
The Money Shredder Lab
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022