code associated with ACL 2021 DExperts paper

Related tags

Deep LearningDExperts
Overview

DExperts

Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at ACL 2021. If you have any questions, please feel free to create a Github issue or reach out to the first author at [email protected].

Create a conda environment called dexperts with

conda env create -f environment.yml

Toxicity

To generate continuations with DExperts and score them for toxicity using the PerspectiveAPI toxicity scorer, run the following command.

OUTPUT_DIR=generations/toxicity/dexperts
PROMPTS_DATASET=prompts/nontoxic_prompts-10k.jsonl

python -m scripts.run_toxicity_experiment \
    --use-dataset \
    --dataset-file $PROMPTS_DATASET \
    --model-type dexperts \
    --model gpt2-large \
    --nontoxic-model $MODEL_DIR/finetuned_gpt2_nontoxic \
    --toxic-model $MODEL_DIR/finetuned_gpt2_toxic \
    --perspective-rate-limit $API_RATE \
    --alpha 2.0 \
    --filter_p 0.9 \
    $OUTPUT_DIR

In general, model_type is one of gpt2 (the base model), dexperts (our method), and pplm. With an OpenAI API key for GPT-3 access, you can also try gpt3 and dexperts-gpt3. Different methods have different additional parameters to specify; to see the commands we used for each method in our paper, please look under scripts/our_scripts/toxicity. For experiments with GeDi, we directly used the original authors' codebase.

When model_type is dexperts, we can steer away from toxicity using only a toxic anti-expert. To do this, leave --nontoxic-model empty, and DExperts will re-use the base model as the expert. The hyperparameter alpha controls the strength of steering over the base model. We use filter_p to use the nucleus from the base model, as described in Section 2.2 of our paper.

This script will create three files in OUTPUT_DIR: generations.jsonl with all of the generated continuations, perspective.jsonl with all the scores from Perspective API, and prompted_gens_[model_type].jsonl, which collates the previous two files.

To try a model's output on your own prompts, simply create your own prompts file! To see the format of the prompts file, see prompts/toy_prompt.jsonl.

Sentiment

To generate continuations with DExperts conditioned on sentiment prompts and score them for sentiment using HuggingFace's sentiment classifier, run the following command.

PROMPTS_DATASET=prompts/sentiment_prompts-10k/neutral_prompts.jsonl
OUTPUT_DIR=generations/sentiment/neutral_prompts/dexperts/positive/

python -m scripts.run_sentiment_experiment \
    --use-dataset \
    --dataset-file $PROMPTS_DATASET \
    --model-type dexperts \
    --model gpt2-large \
    --pos-model $MODEL_DIR/finetuned_gpt2_positive \
    --neg-model $MODEL_DIR/finetuned_gpt2_negative \
    --alpha 3.2 \
    --filter_p 0.9 \
    $OUTPUT_DIR

The model_type can be any of the options from before, with the addition of ctrl. Again, the full commands used for each method can be found under scripts/our_scripts/sentiment.

When model_type is dexperts, we always interpret --pos-model as the expert and --neg-model as the anti-expert; for negative steering, use alpha < 0. By leaving one of --pos-model or --neg-model empty, DExperts will re-use the base model as the missing expert or anti-expert.

Evaluation

To evaluate generated output for fluency and diversity, run the following command. The GENERATIONS_FILE should have the format prompted_gens_[model_type].jsonl.

python -m scripts.evaluation.evaluate_generations \
    --generations_file $GENERATIONS_FILE

Notebooks

Our jupyter notebooks are in notebooks/. To obtain the same tables and plots that appear in the paper, look in sentiment_results.ipynb, toxicity_results.ipynb, and human_eval_results.ipynb. To create your own prompts dataset with a couple lines of code, you can get started with prompts_playground.ipynb. Sample and compare generations from each model with review_sentiment_generations.ipynb and review_toxicity_generations.ipynb.

Downloading the original data and models from our paper

To download the prompts we used for evaluation, generations output by each model, and finetuning datasets from our paper, ensure you have gdown installed, then run the following commands inside the dexperts/ root directory. Descriptions of the contents of each of these folders can be found within the folder.

# prompts
gdown https://drive.google.com/uc?id=1bI49aJvmEoLdqSNb30JkORdsNJmv7Aep
unzip prompts.zip && rm prompts.zip
# generations
gdown https://drive.google.com/uc?id=10jL1-eCv8w3oeGFgA_jrel0enrNVdFW7
unzip generations.zip && rm generations.zip
# datasets
gdown https://drive.google.com/uc?id=1MeEjLPxQ77AYtzL0nd1hYJTlL8OJgHkI
unzip datasets.zip && rm datasets.zip

To download models from our paper,

mkdir models
cd models
# (anti-)expert models
gdown https://drive.google.com/uc?id=1HSrNMrq4OZ3nyTobNd2TZFcB5NYwluu-
unzip experts.zip && rm experts.zip
# DAPT models
gdown https://drive.google.com/uc?id=1eDlRU04s-H1elWWtPuDoBNAqyoqj3_p9
unzip dapt.zip && rm dapt.zip
# PPLM classifiers
gdown https://drive.google.com/uc?id=17s26QM9vJp9hCUkRBrDx5Wa__4BlrqGL
unzip pplm_classifiers.zip && rm pplm_classifiers.zip

Citation

@inproceedings{liu-etal-2021-dexperts,
    title = "{DExperts}: Decoding-Time Controlled Text Generation with Experts and Anti-Experts",
    author = "Alisa Liu and Maarten Sap and Ximing Lu and Swabha Swayamdipta and Chandra Bhagavatula and Noah A. Smith and Yejin Choi",
    booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)",
    year = "2021",
    url = "https://arxiv.org/abs/2105.03023",
}

This code was built on top of allenai/real-toxicity-prompts and with inspiration from yangkevin2/naacl-2021-fudge-controlled-generation.

Owner
Alisa Liu
Alisa Liu
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021