Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Related tags

Deep LearningMS-GCN
Overview

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

This code implements the skeleton-based action segmentation MS-GCN model from Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks and Skeleton-based action segmentation with multi-stage spatial-temporal graph convolutional neural networks, arXiv 2022 (in-review).

It was originally developed for freezing of gait (FOG) assessment on a proprietary dataset. Recently, we have also achieved high skeleton-based action segmentation performance on public datasets, e.g. HuGaDB, LARa, PKU-MMD v2, TUG.

Requirements

Tested on Ubuntu 16.04 and Pytorch 1.10.1. Models were trained on a Nvidia Tesla K80.

The c3d data preparation script requires Biomechanical-Toolkit. For installation instructions, please refer to the following issue.

Content

  • data_prep/ -- Data preparation scripts.
  • main.py -- Main script. I suggest working with this interactively with an IDE. Please provide the dataset and train/predict arguments, e.g. --dataset=fog_example --action=train.
  • batch_gen.py -- Batch loader.
  • label_eval.py -- Compute metrics and save prediction results.
  • model.py -- train/predict script.
  • models/ -- Location for saving the trained models.
  • models/ms_gcn.py -- The MS-GCN model.
  • models/net_utils/ -- Scripts to partition the graph for the various datasets. For more information about the partitioning, please refer to the section Graph representations. For more information about spatial-temporal graphs, please refer to ST-GCN.
  • data/ -- Location for the processed datasets. For more information, please refer to the 'FOG' example.
  • data/signals. -- Scripts for computing the feature representations. Used for datasets that provided spatial features per joint, e.g. FOG, TUG, and PKU-MMD v2. For more information, please refer to the section Graph representations.
  • results/ -- Location for saving the results.

Data

After processing the dataset (scripts are dataset specific), each processed dataset should be placed in the data folder. We provide an example for a motion capture dataset that is in c3d format. For this particular example, we extract 9 joints in 3D:

  • data_prep/read_frame.py -- Import the joints and action labels from the c3d and save both in a separate csv.
  • data_prep/gen_data/ -- Import the csv, construct the input, and save to npy for training. For more information about the input and label shape, please refer to the section Problem statement.

Please refer to the example in data/example/ for more information on how to structure the files for training/prediction.

Pre-trained models

Pre-trained models are provided for HuGaDB, PKU-MMD, and LARa. To reproduce the results from the paper:

  • The dataset should be downloaded from their respective repository.
  • See the "Data" section for more information on how to prepare the datasets.
  • Place the pre-trained models in models/, e.g. models/hugadb.
  • Ensure that the correct graph representation is chosen in ms_gcn.
  • Comment out features = get_features(features) in model (only for lara and hugadb).
  • Specify the correct sampling rate, e.g. downsampling factor of 4 for lara.
  • Run main to generate the per-sample predictions with proper arguments, e.g. --dataset=hugadb --action=predict.
  • Run label_eval with proper arguments, e.g. --dataset=hugadb.

Acknowledgements

The MS-GCN model and code are heavily based on ST-GCN and MS-TCN. We thank the authors for publicly releasing their code.

License

MIT

Owner
Benjamin Filtjens
PhD Student working towards at-home freezing of gait detection https://orcid.org/0000-0003-2609-6883
Benjamin Filtjens
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Atif Hassan 103 Dec 14, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021