Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Overview

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking
Hau Chu, Jia-Hong Lee, Yao-Chih Lee, Ching-Hsien Hsu, Jia-Da Li, Chu-Song Chen
2021 CVPR B-AMFG Workshop

Note: It's a project of AI^2 Lab. The code will be update in here while there is a new version.

Installation

  • Python 3.6+

  • Cuda 9.0

  • Cudnn 7

  • gcc 5 & g++ 5 (for Ubuntu 18.04)

$ sudo apt install gcc-5 g++-5
$ sudo ln -s /usr/bin/gcc-6 /usr/local/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/bin/g++
  • Conda Env
$ conda create -n venv python=3.6
$ conda activate venv
$ conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
$ pip install tensorflow_gpu==1.9.0
$ pip install -r requirements.txt
  • Git
$ sudo apt install git

Data preparation

Download datasets:

  1. Campus (http://campar.in.tum.de/Chair/MultiHumanPose)
  2. Shelf (http://campar.in.tum.de/Chair/MultiHumanPose)
  3. CMU Panoptic (https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox)

Dataset's camera_parameter.pickle download

The directory tree should look like below:

${ROOT}
    |-- CatchImage
        |-- CampusSeq1
        |   |-- Camera0
        |   |-- Camera1
        |   |-- Camera2
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Shelf
        |   |-- Camera0
        |   |-- ...
        |   |-- Camera4
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Panoptic
        |   |-- 160906_pizza1
            |   |-- 00_03 # hdImgs folder of 03 camera
            |   |-- 00_06 # hdImgs folder of 06 camera
            |   |-- ...
            |   |-- camera_parameter.pickle
            |   |-- hdPose_stage1_coco19
            |-- ...
    |-- src

Backend Models

Backend models, which is not our works, are released codes from others. We only did some small modifications to fit the format of our input/output. Put models in {ROOT}/src/backend

  1. YOLOv3
  2. HRNet

Run Codes

Demo

$cd src
python -W ignore testmodel.py --dataset CampusSeq1 # For Campus
python -W ignore testmodel.py --dataset Shelf # For Shelf
python -W ignore testmodel.py --dataset Panoptic # For Panoptic (sub-dataset can be modified in config)

Evaluation

$cd src
python -W ignore evalmodel.py --dataset CampusSeq1 
python -W ignore evalmodel.py --dataset Shelf

Campus PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 100.00 100.00 100.00 100.00
Torso 100.00 100.00 100.00 100.00
Upper arms 98.98 100.00 100.00 99.66
Lower arms 92.86 68.78 91.30 84.31
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 98.37 93.76 98.26 96.79

Shelf PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 94.98 100.00 91.30 95.43
Torso 100.00 100.00 100.00 100.00
Upper arms 100.00 100.00 96.27 98.76
Lower arms 98.21 77.03 96.27 90.50
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 99.14 95.41 97.64 97.39

Citation

@InProceedings{Chu_2021_CVPR,
    author    = {Chu, Hau and Lee, Jia-Hong and Lee, Yao-Chih and Hsu, Ching-Hsien and Li, Jia-Da and Chen, Chu-Song},
    title     = {Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {1472-1481}
}
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

UirĂ¡ Caiado 470 Nov 28, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022