Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Related tags

Deep LearningSPR
Overview

Continual Learning on Noisy Data Streams via Self-Purified Replay

This repository contains the official PyTorch implementation for our ICCV2021 paper.

  • Chris Dongjoo Kim*, Jinseo Jeong*, Sangwoo Moon, Gunhee Kim. Continual Learning on Noisy Data Streams via Self-Purified Replay. In ICCV, 2021 (* equal contribution).

[Paper Link][Slides][Poster]

System Dependencies

  • Python >= 3.6.1
  • CUDA >= 9.0 supported GPU

Installation

Using virtual env is recommended.

$ conda create --name SPR python=3.6

Install pytorch==1.7.0 and torchvision==0.8.1. Then, install the rest of the requirements.

$ pip install -r requirements.txt

Data and Log directory set-up

create checkpoints and data directories. We recommend symbolic links as below.

$ mkdir data
$ ln -s [MNIST Data Path] data/mnist
$ ln -s [CIFAR10 Data Path] data/cifar10
$ ln -s [CIFAR100 Data Path] data/cifar100
$ ln -s [Webvision Data Path] data/webvision

$ ln -s [log directory path] checkpoints

Run

Specify parameters in config yaml, episodes yaml files.

python main.py --log-dir [log directory path] --c [config file path] --e [episode file path] --override "|" --random_seed [seed]

# e.g. to run mnist symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --override "corruption_percent=0.4";

# e.g. to run cifar10 asymmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar10_spr.yaml --e episodes/cifar10-split_epc1_asym_a.yaml --override "asymmetric_nosie=False|corruption_percent=0.4";

# e.g. to run cifar100 superclass symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar100_spr.yaml --e episodes/cifar100sup-split_epc1_a.yaml --override "superclass_nosie=True|corruption_percent=0.4";

Expert Parallel Training

If you use slurm environment, training expert models in advance is possible.

# e.g. to run mnist symmetric noise 40% experiment,
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --njobs 10 --jobs_per_gpu 3

# also, you can only train experts for later use by adding an --expert_train_only option.
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --ngpu 10 --jobs_per_gpu 3 --expert_train_only

## to use the trained experts, set the same [log directory path] and [seed].
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4";

Citation

The code and dataset are free to use for academic purposes only. If you use any of the material in this repository as part of your work, we ask you to cite:

@inproceedings{kim-ICCV-2021,
    author    = {Chris Dongjoo Kim and Jinseo Jeong and Sangwoo Moon and Gunhee Kim},
    title     = "{Continual Learning on Noisy Data Streams via Self-Purified Replay}"
    booktitle = {ICCV},
    year      = 2021
}

Last edit: Oct 12, 2021

Owner
Jinseo Jeong
graduate student @ vision & learning lab, Seoul National Univ.
Jinseo Jeong
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022