Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

Overview

Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

🚙 🛵 🚛 🚌

A project for counting vehicles using YOLOv4 for training, DeepSORT for tracking, Flask for deploying to web (watch result purpose only) and Ngrok for public IP address

References

I want to give my big thanks to all of these authors' repo:

Getting Started

This project has 3 main parts:

  1. Preparing data
  2. Training model using the power of YOLOv4
  3. Implementing DeepSORT algorithm for counting vehicles

Preparing data

Preparing data notebook

I splitted my data into 2 scenes: daytime and nighttime, and training 8 classes (4 classes each scene, which are motorbike, car, bus, truck).

Prepare your own data or you can download my cleaned data with annotations:

If you prepare your own data, remember your annotation files fit this format:

  1. Every image has its own annotation file (.txt)
  2. Each file contains a list of objects' bounding box (read this for more details):

   
    
    
     
     
      
      
       
       
       
         ... 
       
      
      
     
     
    
    
   
   

Training model using YOLOv4

Training model notebook

Training model on your local computer is really complicated in environment installation and slow if you don't have a powerful GPU. In this case, I used Google Colab.

Read more: Testing your trained model on local machine with OpenCV

Implementing DeepSORT algorithm for counting vehicles

Implementing DeepSORT notebook

First, setting up environment on your machine:

Conda (Recommended)

# Tensorflow CPU
conda env create -f conda-cpu.yml
conda activate yolov4-cpu

# Tensorflow GPU
conda env create -f conda-gpu.yml
conda activate yolov4-gpu

Pip

(TensorFlow 2 packages require a pip version > 19.0.)

# TensorFlow CPU
pip install -r requirements.txt

# TensorFlow GPU
pip install -r requirements-gpu.txt

# Google Colab
!pip install -r requirements-colab.txt

Convert YOLOv4 model to Tensorflow Keras

Copy your trained model in previous part to this project and run save_model.py in cmd:

  • --weights: Path to .weights file (your trained model)
  • --output: Path to converted model.
  • --model: Model version (yolov4 in this case)
python save_model.py --weights ./yolov4_final.weights --output ./checkpoints/yolov4-416 --model yolov4

Download my .weights model if you want: GGDrive mirror

Counting now!

Import VehiclesCounting class in object_tracker.py file and using run() to start running:

# Import this main file
from object_tracker import VehiclesCounting
# Initialize
vc = VehiclesCounting(cam_name,
framework='tf', 
weights='./checkpoints/yolov4-416', 
size=416, 
tiny=False, 
model='yolov4', 
video='./data/video/test.mp4', 
output=None, 
output_format='XVID', 
iou=0.45, 
score=0.5, 
dont_show=False, 
info=False, 
count=False,
detect_line_position=0.5
detect_line_angle=0)
  • cam_name: input your camera name
  • framework: choose your model framework (tf, tflite, trt)
  • weights: path to your .weights
  • size: resize images to
  • tiny: (yolo,yolo-tiny)
  • model: (yolov3,yolov4)
  • video: path to your video or set 0 for webcam or youtube url
  • output: path to your results
  • output_format: codec used in VideoWriter when saving video to file
  • iou: iou threshold
  • score: score threshold
  • dont_show: dont show video output
  • info: show detailed info of tracked objects
  • count: count objects being tracked on screen
  • detect_line_position: (0..1) of height of video frame.
  • detect_line_angle: (0..180) degrees of detect line.
# Run it
vc.run()

Contact me

Owner
Duong Tran Thanh
I love learning AI and mobile development
Duong Tran Thanh
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022