[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

Overview

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

Getting Started

Our codes are implemented and tested with python 3.6 and pytorch 1.5.

Install Pytorch following the official guide on Pytorch website.

And install the requirements using virtualenv or conda:

pip install -r requirements.txt

Data Preparation

Refer to data.md for instructions.

Training

Stage 1 training

Generally, you can use the distributed launch script of pytorch to start training.

For example, for a training on 2 nodes, 4 gpus each (2x4=8 gpus total): On node 0, run:

python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=0 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage1.yaml

On node 1, run:

python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=1 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage1.yaml

Otherwise, if you are using task scheduling system such as Slurm to submit your training tasks, you can refer to this script to start your training:

# training on 2 nodes, 4 gpus each (2x4=8 gpus total)
sh scripts/run.sh 2 4 configs/config_stage1.yaml

The checkpoint of training will be saved in [results/] by default. You are free to modify it in the config file.

Stage 2 training

Use the last checkpoint of stage 1 to initialize the model and starts training stage 2.

# On Node 0.
python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=0 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage2.yaml --pretrained <PATH_TO_CHECKPOINT_FILE>

Similar on node 1.

Evaluation

To evaluate model on 3dpw test set:

python eval.py --cfg <PATH_TO_EXPERIMENT>/config.yaml --checkpoint <PATH_TO_EXPERIMENT>/model_best.pth.tar --eval_set 3dpw

Evaluation metric is Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE) in mm.

Models PA-MPJPE ↓ MPJPE ↓ PVE ↓ ACCEL ↓
HMR (w/o 3DPW) 81.3 130.0 - 37.4
SPIN (w/o 3DPW) 59.2 96.9 116.4 29.8
MEVA (w/ 3DPW) 54.7 86.9 - 11.6
VIBE (w/o 3DPW) 56.5 93.5 113.4 27.1
VIBE (w/ 3DPW) 51.9 82.9 99.1 23.4
ours (w/o 3DPW) 50.7 88.8 104.5 18.0
ours (w/ 3DPW) 45.7 79.1 92.6 17.6

Citation

@inproceedings{wan2021,
  title={Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation},
  author={Ziniu Wan, Zhengjia Li, Maoqing Tian, Jianbo Liu, Shuai Yi, Hongsheng Li},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}
Owner
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022