NeurIPS 2021, self-supervised 6D pose on category level

Overview

SE(3)-eSCOPE

video | paper | website

Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

Xiaolong Li, Yijia Weng, Li Yi , Leonidas Guibas, A. Lynn Abbott, Shuran Song, He Wang

NeurIPS 2021

SE(3)-eSCOPE is a self-supervised learning framework to estimate category-level 6D object pose from single 3D point clouds, with no ground-truth pose annotations, no GT CAD models, and no multi-view supervision during training. The key to our method is to disentangle shape and pose through an invariant shape reconstruction module and an equivariant pose estimation module, empowered by SE(3) equivariant point cloud networks and reconstruction loss.

News

[2021-11] We release the training code for 5 categories.

Prerequisites

The code is built and tested with following libraries:

  • Python>=3.6
  • PyTorch/1.7.1
  • gcc>=6.1.0
  • cmake
  • cuda/11.0.1, or cuda/11.1 for newer GPUs
  • cudnn

Recommended Installation

# 1. install python environments
conda create --name equi-pose python=3.6
source activate equi-pose
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

# 2. compile extra CUDA libraries
bash build.sh

Data Preparation

You could find the subset we use for ModelNet40 directly [drive_link], and our rendered depth point clouds dataset [drive_link], download and put them into your own 'data' folder. check global_info.py for codes and data paths.

Training

You may run the following code to train the model from scratch:

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category]

For example, to train the model on completet airplane, you may run

python main.py exp_num='1.0' training="complete_pcloud" dataset="modelnet40_complete" category='airplane' use_wandb=True

Testing Pretrained Models

Some of our pretrained checkpoints have been released, check [drive_link]. Put them in the 'second_path/models' folder. You can run the following command to test the performance;

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category] eval=True save=True

For example, to test the model on complete airplane category or partial airplane, you may run

python main.py exp_num='0.813' training="complete_pcloud" dataset="modelnet40_complete" category='airplane'
eval=True save=True
python main.py exp_num='0.913r' training="partial_pcloud" dataset="modelnet40_partial" category='airplane' eval=True save=True

Note: add "use_fps_points=True" to get slightly better results; for your own datasets, add 'pre_compute_delta=True' and use example canonical shapes to compute pose misalignment first.

Visualization

Check out my script demo.py or teaser.py for some hints.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{li2021leveraging,
    title={Leveraging SE (3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds},
    author={Li, Xiaolong and Weng, Yijia and Yi, Li and Guibas, Leonidas and Abbott, A Lynn and Song, Shuran and Wang, He},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021}
  }

We thank Haiwei Chen for the helpful discussions on equivariant neural networks.

Owner
Xiaolong
PhD student in Computer Vision, Virginia Tech
Xiaolong
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Xintao 1.4k Dec 25, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022