The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Related tags

Deep LearningRBN
Overview

Representative Batch Normalization (RBN) with Feature Calibration

The official implementation of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

You only need to replace the BN with our RBN without any other adjustment.

Update

  • 2021.4.9 The Jittor implementation is available now in Jittor.
  • 2021.4.1 The training code of ImageNet classification using RBN is released.

Introduction

Batch Normalization (BatchNorm) has become the default component in modern neural networks to stabilize training. In BatchNorm, centering and scaling operations, along with mean and variance statistics, are utilized for feature standardization over the batch dimension. The batch dependency of BatchNorm enables stable training and better representation of the network, while inevitably ignores the representation differences among instances. We propose to add a simple yet effective feature calibration scheme into the centering and scaling operations of BatchNorm, enhancing the instance-specific representations with the negligible computational cost. The centering calibration strengthens informative features and reduces noisy features. The scaling calibration restricts the feature intensity to form a more stable feature distribution. Our proposed variant of BatchNorm, namely Representative BatchNorm, can be plugged into existing methods to boost the performance of various tasks such as classification, detection, and segmentation.

Applications

ImageNet classification

The training code of ImageNet classification is released in ImageNet_training folder.

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{gao2021rbn,
  title={Representative Batch Normalization with Feature Calibration},
  author={Gao, Shang-Hua and Han, Qi and Li, Duo and Peng, Pai and Cheng, Ming-Ming and Pai Peng},
  booktitle=CVPR,
  year={2021}
}

Contact

If you have any questions, feel free to E-mail Shang-Hua Gao (shgao(at)live.com) and Qi Han(hqer(at)foxmail.com).

You might also like...
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

[CVPR 2022] Official code for the paper:
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

 Code for CVPR2021 paper
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

Comments
  • 关于scaling Calibration的可学习参数b初始化问题

    关于scaling Calibration的可学习参数b初始化问题

    您好,我有个问题想问下,关于scaling calibration中,您对偏置b的参数初始化为1,这是有什么根据吗

    self.scale_weight.data.fill_(0)
    self.scale_bias.data.fill_(1)
    

    因为根据你的公式 image 在限制函数中(沿用你代码的sigmoid函数),你先让可学习参数w初始化为0,那么整个限制函数中一开始就是

    R(wb)
    

    而wb一开始为1的时候,对应sigmoid的值约为0.731,把他提到方差外部,则方差变为原始方差的0.73*0.73 = 0.5329,相当于方差减半了。若一开始训练就做这么剧烈的变化,是不是对后续训练有一定影响?

    我能理解权重w初始化为0,可以根据centering calibration那一节有

    When the absolute value of wm is close to zero, the centering operation still relies on the running statistics.

    针对这两个可学习参数的初始值设定,有进行过相关实验探讨吗

    opened by MARD1NO 2
  • 使用fuse函数会报错

    使用fuse函数会报错

    def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True)

        # prepare filters
        w_conv = conv.weight.clone().view(conv.out_channels, -1)
        w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
        fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
    
        # prepare spatial bias
        if conv.bias is not None:
            b_conv = conv.bias
        else:
            b_conv = torch.zeros(conv.weight.size(0))
        b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
        fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
    
        return fusedconv
    

    Fusing layers... Traceback (most recent call last): File "test.py", line 263, in opt.augment) File "test.py", line 45, in test model.fuse() File "/home/zzf/Desktop/yolov3-dbb+representbatchnorm/models.py", line 402, in fuse fused = torch_utils.fuse_conv_and_bn(conv, b) File "/home/zzf/Desktop/yolov3-dbb+representbatchnorm/utils/torch_utils.py", line 83, in fuse_conv_and_bn w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) RuntimeError: matrix or a vector expected

    把自己网络的batchnorm 改变后会报错麻烦解决以下。

    opened by xiaowanzizz 1
  • 论文中的一些疑惑

    论文中的一些疑惑

    您好,感谢您的工作!论文里的一些地方我没有明白,希望您能解答一下,谢谢。 ① image When the Km in Eqn.(5) is set to Uc,the running mean of Km is equal to E(X) 请问这句话应该怎么理解呢? ②在Choice of Instance Statistics中,你提到的the mean and standard division over spatial dimensions, denoted by image 请问这两个值具体怎么计算? ③ ”Since scaling calibration only restricts the feature intensity while not changing the amount of information, scaling with both channel and spatial statistics results in a similar performance.”,请问改变信息的数量是什么意思呢?

    opened by songyonger 1
Releases(pretrained)
Owner
Open source projects of ShangHua-Gao
Open source projects of ShangHua-Gao
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022