Provably Rare Gem Miner.

Overview

Provably Rare Gem Miner

just another random project by yoyoismee.eth

useful link

useful thing you should know

  • read contract -> gems(gemID) to get useful info
  • write contract -> mine to claim(kind, salt) to claim your NFT

to run. just edit the python file and run it.

pip install -r requirement.txt
python3 stick_the_miner.py

or new one auto_mine.py for less input. but you'll need infura account

Ps. too lazy to write docs. but it's 50 LoCs have fun.


why stick the miner ? welp.. this is part of the stick the BUIDLer series.

TL;DR - I'm working on a series of opensource NFT related project just for fun.

Key parameters to change if you are using orginal version 'stick_the_miner.py' (cr. K Nattakit's FB post)

  • chain_id - eth:1, fantom:250
  • entropy - ??
  • gemAddr - Game address, can get from https://gems.alphafinance.io/ (loot/bloot/rarity)
  • userAddr - your Wallet address
  • kind = ประเภทของเพชรที่จะขุด ผมแนะนำเป็น Emerald เพราะ return/difficult สูงที่สุด ง่าย ๆ คือคุณจะกำไรเร็วกว่านั่นเอง
  • nonce - number of times you've minted a gem (https://gems.alphafinance.io/ and connect your wallet)
  • diff - difficulty of gemID (https://gems.alphafinance.io/), note that this changes everytime someone minted that gem, so you need to change it too

(more detail) how to use 'auto_mine.py', the updated version of stick_the_miner

  • benefits: manual version (stick_the_miner.py) requires you to update the 'diff' parameter every time someone minted the nft of the target gem, and 'nounce' if you successfully minted one. This version automates that so you just have to rerun to update.
  • steps:
    1. update requirements pip install -r requirements.txt
    1. create an account at (https://infura.io/), select your chain (e.g. Ethereum), create a project and obtain your project ID
    1. create a .env file in the same format as .env-example, inputing your information from (2.), your wallet address and gem ID
    1. python3 auto_mine.py
  • Note: although you dont have to manually adjust 'diff' parameter everytime, you still need to restart the process everytime someone minted target gem's nft still

Once you get the salt:

Multicore version

  • Normal version uses only 1 core of processors, the multicore version should be ~8 times faster depending on your CPU / coreNumber variable
  • You can select the number of processors by chainging coreNumber variable (should not exceed ~16 tho)
  • "fantom_mining_pool_auto_multicore_line.py" is the multicore version of fantom_mining_pool.py
  • for mining by yourself and manual claim please use "fantom_multicore_line.py"
Comments
  • 🎨Added colorlog package for output with colors

    🎨Added colorlog package for output with colors

    I use the classic stick_the_miner.py for mining and had a hard time looking for the salt output due to the monochrome color. So, I decided to differentiate the salt output with the colorlog package😁

    opened by mickyngub 2
  • Multicore version of the miner for both pool mining and self mining

    Multicore version of the miner for both pool mining and self mining

    Depending on your CPU and the coreNumber variable, it should be ~8 times faster than the original version but with the drawback of a tremendous increase in CPU utilization.

    opened by mickyngub 1
  • Lowering the priority of python.exe to reduce lags

    Lowering the priority of python.exe to reduce lags

    If a user is mining gems in the background while using other compute-intensive programs, the user might experience lags due to 100% CPU utilization. By lowering the priority of python.exe miner, other programs will have higher priorities. Thus, users would be less likely to experience lagging issues.

    Under a normal circumstance in which the CPU utilization is less than 100%, it should have no impact on iter/sec.

    Before

    image

    After

    image

    opened by mickyngub 1
  • update fantom_mining_pool

    update fantom_mining_pool

    • edit .env-example add NOTIFY_AUTH_TOKEN, DIFF and PRIVATE_KEY
    • edit var private_key to PRIVATE_KEY
    • insert if PRIVATE_KEY != ''
    • get PRIVATE_KEY from .env for safety
    opened by NuttakitDW 0
  • why other people mint so quickly

    why other people mint so quickly

    https://ftmscan.com/address/0x729d74098f6669541ed1b69403ae75f080ccf1e1

    this people mint level 4 gems so quickly ,his salt is too low, but execute success.

    are you knonw the reason? image

    opened by sumrise 3
  • refactor to support multiple chain properly

    refactor to support multiple chain properly

    some of our code is unnecessary based on Ethereum e.g. infura_key, hard code chain no, and more todo: refactor to a more generic one that would be valid across all EVM compatible chain e.g. infura_key -> rpc_provider (also fix others code to match this change) and more

    also TODO: remove the quick fix for fantom file LOL

    opened by yoyoismee 0
  • Idea for sampling different range of int random on multiple workers

    Idea for sampling different range of int random on multiple workers

    Will probably do tmr, parse n worker to the get_salt function so each worker could random int from different range of numbers eg. worker 1: 1-2^122, worker 2: 2^122 to 2^123

    opened by Duayt 1
Releases(v0.0.1d-test-build)
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022