Inkscape extensions for figure resizing and editing

Overview

Academic-Inkscape: Extensions for figure resizing and editing

This repository contains several Inkscape extensions designed for editing plots.

  1. Scale Plots: Changes the size or aspect ratio of a plot without modifying its text and ticks. Especially useful for assembling multi-panel figures.
  2. Flatten Plots: A utility that eliminates much of the structure generated by common vector graphics plotting programs. Makes editing much easier.
  3. The Homogenizer: Quickly sets uniform fonts, font sizes, and stroke widths in a selection.
  4. The Auto-Exporter: A program that will automatically export your SVG files to various formats and keep them updated.

All were written by David Burghoff at the University of Notre Dame. If you find it useful, tell your collegaues!

Installation

You must have the latest release version of Inkscape (1.0.2), and the extensions should be installed using the instructions provided here. Download all of these files, then copy them into the directory listed at Edit > Preferences > System: User extensions. After a restart of Inkscape, the group extensions will be available under Extensions > Academic.

Scale Plots

When dealing with vector graphics generated by plotting environments like Matlab and Matplotlib, resizing plots after the plot has been generated can be difficult. Generally, one wants to resize the lines and data of a plot while leaving text, ticks, and stroke widths unaffected. This is best done in the original program, but precludes quick modification.

For most plots, Scale Plots generates acceptable scalings with little effort. Lines and data are scaled while text and ticks are merely repositioned. The extension attempts to maintain the distance between axes and labels/tick labels by assigning a plot area—a bounding box that is calculated from the largest horizontal and vertical lines. Anything outside is assumed to be a label. (If your plot's axes do not have lines, temporarily add a box to define a plot area.)

Scale Plots example

To use:

  1. Run Flatten Plots on your plot to remove structure generated by the PDF/EPS/SVG exporting process.
  2. Place any objects that you wish to remain unscaled in a group.
  3. Select the elements of your plot and run Scale Plots.

Scale Plots has two modes. In Scaling Mode, the plot is scaled by a constant factor. In Matching Mode, the plot area is made to match the size of the first object you select. This can be convenient when assembling subfigures, as it allows you to match the size of one plot to another plot or to a template rectangle.

Advanced options

  1. If "Auto tick correct" is enabled, the extension assumes that any small horizontal or vertical lines near the edges of the plot area are ticks, and automatically leaves them unscaled.
  2. If a layer name is put into the "Scale-free layer" option, any elements on that layer will remain unscaled. This is basically the same thing as putting an object in a group, but can be easier if there are many such objects (e.g, if your plot has markers).

Flatten Plots

Flatten Plots is a useful utility that eliminates many of the difficulties that arise when plots are exported from common plotting programs.

  1. Deep ungroup: The Scale Plots utility uses grouping to determine when objects are to be kept together, so a deep ungroup is typically needed to remove any existing groupings initially. It also unlinks any clones.
  2. Apply text fixes: Applies a series of fixes to text described below (particularly useful for PDF/EPS text).
  3. Remove white rectangles: Removes any rectangles that have white fill and no stroke. Mostly for removing a plot's background.

Text fixes

  1. Split distant text: Depending on the renderer, it is often the case that the PDF/EPS printing process generates text implemented as a single text object. For example, all of the x-axis ticks might be one object, all of the y-axis ticks might be another, and the title and labels may be another. Internally, each letter is positioned independently. This looks fine, but causes issues when trying to scale or do anything nontrivial.

    drawing

  2. Repair shattered text: Similarly, text in PDFs is often 'shattered'—its letters are positioned individually, so if you try to edit it you will get strange results. This option reverses that, although the tradeoff is that text may be slightly repositioned.

    drawing

  3. Replace missing fonts: Useful for imported documents whose original fonts are not installed on the current machine.

The Homogenizer

The Homogenizer is a utility that does what its name implies: it will set all of the fonts, font sizes, and stroke widths in a selection to the same value. This is most useful when assembling sub-figures, as it allows you to ensure that the whole figure has a uniform look.

Auto-Exporter

The Auto-Exporter is not technically an extension, it is a Python script meant to be run in the background as a daemon. If you frequently export your figures to other formats, you know that updating them whenever you change your figure is a nuisance. This program does it automatically: you specify a directory that the program monitors, and whenever any SVGs are changed, it automatically converts them to the formats you specify. Just select (a) the location where the Inkscape binary is installed, (b) what directory you would like it to watch, and (c) where you would like it to put the exports.

It is currently implemented as a Python script and requires at least Python 3.7. If someone would like to package it into a nice GUI and create executables, let me know.

You might also like...
(ICCV 2021) Official code of
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Implements the training, testing and editing tools for
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Official implementation for
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Editing a Conditional Radiance Field
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

Comments
  • Working with multiple subfigures in a single layer

    Working with multiple subfigures in a single layer

    Hi there! Thanks for making an amazing extension - I've just discovered it, but I'm sure it'll become a dear companion!

    For my current workflow, I prepare all figures for a paper in the same file, but on separate layers. This means that figures containing multiple subfigures have a few groups within them. Currently, it seems that the flattener flattens to the top group, even if I select only select a single subgroup (i.e. all the subfigures become a single group). Is there a way (or could there be) of only doing the deep ungrouping from the chosen group and down?

    Thanks!

    opened by roaldarbol 7
  • Points not adjusting size

    Points not adjusting size

    Hi again, sorry to pile on. Please address these at your own pace. :-)

    It seems that the Scaling doesn't work well with markers such as points. Here's a simple raw example: Screenshot 2022-12-15 at 11 32 16

    And here's the scaled version of it, tried both with Scaling mode and Correction mode: Screenshot 2022-12-15 at 11 34 21

    There also seems to be something funky happening with the header, but I think that's simply because it's not rendered well in the original (I can create a separate issue if you'd like me to dig into it a bit).

    opened by roaldarbol 3
  • Flatten Plots does not fully support differential kerning

    Flatten Plots does not fully support differential kerning

    Text that has a dx component will not always be properly de-kerned. This is not a problem for anything imported by Inkscape, but SVG files generated by other programs may cause issues.

    x_and_dx.zip

    opened by burghoff 0
Releases(v1.2.28)
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022