Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Overview

GRB

PyPi Latest Release Documentation Status License

Homepage | Paper | Datasets | Leaderboard | Documentation

Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evaluation on the adversarial robustness of graph machine learning models. GRB has elaborated datasets, unified evaluation pipeline, modular coding framework, and reproducible leaderboards, which facilitate the developments of graph adversarial learning, summarizing existing progress and generating insights into future research.

Updates

Get Started

Installation

Install grb via pip:

pip install grb

Install grb via git:

git clone [email protected]:THUDM/grb.git
cd grb
pip install -e .

Preparation

GRB provides all necessary components to ensure the reproducibility of evaluation results. Get datasets from link or download them by running the following script:

cd ./scripts
sh download_dataset.sh

Get attack results (adversarial adjacency matrix and features) from link or download them by running the following script:

sh download_attack_results.sh

Get saved models (model weights) from link or download them by running the following script:

sh download_saved_models.sh

Usage of GRB Modules

Training a GML model

An example of training Graph Convolutional Network (GCN) on grb-cora dataset.

import torch  # pytorch backend
from grb.dataset import Dataset
from grb.model.torch import GCN
from grb.trainer.trainer import Trainer

# Load data
dataset = Dataset(name='grb-cora', mode='easy',
                  feat_norm='arctan')
# Build model
model = GCN(in_features=dataset.num_features,
            out_features=dataset.num_classes,
            hidden_features=[64, 64])
# Training
adam = torch.optim.Adam(model.parameters(), lr=0.01)
trainer = Trainer(dataset=dataset, optimizer=adam,
                  loss=torch.nn.functional.nll_loss)
trainer.train(model=model, n_epoch=200, dropout=0.5,
              train_mode='inductive')

Adversarial attack

An example of applying Topological Defective Graph Injection Attack (TDGIA) on trained GCN model.

from grb.attack.injection.tdgia import TDGIA

# Attack configuration
tdgia = TDGIA(lr=0.01, 
              n_epoch=10,
              n_inject_max=20, 
              n_edge_max=20,
              feat_lim_min=-0.9, 
              feat_lim_max=0.9,
              sequential_step=0.2)
# Apply attack
rst = tdgia.attack(model=model,
                   adj=dataset.adj,
                   features=dataset.features,
                   target_mask=dataset.test_mask)
# Get modified adj and features
adj_attack, features_attack = rst

GRB Evaluation

Evaluation scenario (Injection Attack)

GRB

GRB provides a unified evaluation scenario for fair comparisons between attacks and defenses. The scenario is Black-box, Evasion, Inductive, Injection. Take the case of a citation-graph classification system for example. The platform collects labeled data from previous papers and trains a GML model. When a batch of new papers are submitted, it updates the graph and uses the trained model to predict labels for them.

  • Black-box: Both the attacker and the defender have no knowledge about the applied methods each other uses.
  • Evasion: Models are already trained in trusted data (e.g. authenticated users), which are untouched by the attackers but might have natural noises. Thus, attacks will only happen during the inference phase.
  • Inductive: Models are used to classify unseen data (e.g. new users), i.e. validation or test data are unseen during training, which requires models to generalize to out of distribution data.
  • Injection: The attackers can only inject new nodes but not modify the target nodes directly. Since it is usually hard to hack into users' accounts and modify their profiles. However, it is easier to create fake accounts and connect them to existing users.

GRB Leaderboard

GRB maintains leaderboards that permits a fair comparision across various attacks and defenses. To ensure the reproducibility, we provide all necessary information including datasets, attack results, saved models, etc. Besides, all results on the leaderboards can be easily reproduced by running the following scripts (e.g. leaderboard for grb-cora dataset):

sh run_leaderboard_pipeline.sh -d grb-cora -g 0 -s ./leaderboard -n 0
Usage: run_leaderboard_pipeline.sh [-d <string>] [-g <int>] [-s <string>] [-n <int>]
Pipeline for reproducing leaderboard on the chosen dataset.
    -h      Display help message.
    -d      Choose a dataset.
    -s      Set a directory to save leaderboard files.
    -n      Choose the number of an attack from 0 to 9.
    -g      Choose a GPU device. -1 for CPU.

Submission

We welcome researchers to submit new methods including attacks, defenses, or new GML models to enrich the GRB leaderboard. For future submissions, one should follow the GRB Evaluation Rules and respect the reproducibility.

Please submit your methods via the google form GRB submission. Our team will verify the result within a week.

Requirements

  • scipy==1.5.2
  • numpy==1.19.1
  • torch==1.8.0
  • networkx==2.5
  • pandas~=1.2.3
  • cogdl~=0.3.0.post1
  • scikit-learn~=0.24.1

Citing GRB

Please cite our paper if you find GRB useful for your research:

@article{zheng2021grb,
  title={Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning},
  author={Zheng, Qinkai and Zou, Xu and Dong, Yuxiao and Cen, Yukuo and Yin, Da and Xu, Jiarong and Yang, Yang and Tang, Jie},
  journal={Neural Information Processing Systems Track on Datasets and Benchmarks 2021},
  year={2021}
}

Contact

In case of any problem, please contact us via email: [email protected]. We also welcome researchers to join our Google Group for further discussion on the adversarial robustness of graph machine learning.

Comments
  • Issue on Duplicating Linked Nodes in PGD

    Issue on Duplicating Linked Nodes in PGD

    Hi GRB Team,

    When using the latest GRB codebase, I found an issue in your implementation of random injection. For example, in /attack/PGD.py, an array islinked is created but never used, which would lead to repeated connections and hence producing an adj_attack with fewer injected edges. May I know whether it is intended or a mistake? Thank you. 😀

    opened by LFhase 2
  • Bump numpy from 1.19.1 to 1.22.0

    Bump numpy from 1.19.1 to 1.22.0

    Bumps numpy from 1.19.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • release of model class codes?

    release of model class codes?

    Hi GRB team,

    I want to modify, e.g., add new layers, and fine-tune the existing robust models listed in the leaderboard. It would make things much easier if I can access these models' class codes i.e., model definitions. Wonder where I can download them?

    Thanks very much for your help! Best, Yang

    opened by songy0123 0
  • Can't reach the accuracy of leaderboard

    Can't reach the accuracy of leaderboard

    Hi, I tried to use the pipeline to reproduce the result of GRB leaderboard but can't reach the accuracy given by the paper and grb website. There is always a 2-5% gap between the paper and my experiment. Could you please provide the full code for reproducing?

    opened by jiqianwanbaichi 4
  • Import error Trainer in Train Pipeline

    Import error Trainer in Train Pipeline

    Hi,

    the following line throws an error:

    https://github.com/THUDM/grb/blob/master/pipeline/train_pipeline.py#L8

    Traceback (most recent call last):
      File "/nfs/homedirs/geisler/code/grb/pipeline/train_pipeline.py", line 8, in <module>
        from grb.utils import Trainer, Logger
    ImportError: cannot import name 'Trainer' from 'grb.utils' (/nfs/homedirs/geisler/code/grb/grb/utils/__init__.py)
    
    opened by sigeisler 1
Releases(v0.1.0)
  • v0.1.0(Aug 5, 2021)

    The first release of Graph Robustness Benchmark (GRB).

    • API based on pure PyTorch, CogDL, and DGL.
    • Include five graph datasets of different scales.
    • Support graph injection attacks (e.g., RND, FGSM, PGS, SPEIT, TDGIA).
    • Support adversarial defenses (e.g., layer normalization, adversarial training, GNNSVD, GNNGuard).
    • Provide homepage.
    • Provide leaderboards of all datasets.
    • Provide basic documentation.
    • Provide scripts for reproducing results.
    Source code(tar.gz)
    Source code(zip)
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022