Linear programming solver for paper-reviewer matching and mind-matching

Overview

Paper-Reviewer Matcher

A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is implemented based on this article). This package solves problem of assigning paper to reviewers with constrains by solving linear programming problem. We minimize global distance between papers and reviewers in topic space (e.g. topic modeling can be Principal component, Latent Semantic Analysis (LSA), etc.).

Here is a diagram of problem setup and how we solve the problem.

Mind-Match Command Line

Mind-Match is a session we run at Cognitive Computational Neuroscience (CCN) conference. We use a combination of topic modeling and linear programming to solve optimal matching problem. To run example Mind-Match algorithm on sample of 500 people, you can clone the repository and run the following

python mindmatch.py data/mindmatch_example.csv --n_match=6 --n_trim=50

in the root of this repo. This should produce a matching output output_match.csv in this relative location. However, when people get much larger this script takes quite a long time to run. We use pre-cluster into groups before running the mind-matching to make the script runs faster. Below is an example script for pre-clustering and mind-matching on all data:

python mindmatch_cluster.py data/mindmatch_example.csv --n_match=6 --n_trim=50 --n_clusters=4

Example script for the conferences

Here, I include a recent scripts for our Mind Matching session for CCN conference.

  • ccn_mind_matching_2019.py contains script for Mind Matching session (match scientists to scientists) for CCN conference
  • ccn_paper_reviewer_matching.py contains script for matching publications to reviewers for CCN conference, see example of CSV files in data folder

The code makes the distance metric of topics between incoming papers with reviewers (for ccn_paper_reviewer_matching.py) and between people with people (for ccn_mind_matching_2019). We trim the metric so that the problem is not too big to solve using or-tools. It then solves linear programming problem to assign the best matches which minimize the global distance between papers to reviewers. After that, we make the output that can be used by the organizers of the CCN conference -- pairs of paper and reviewers or mind-matching schedule between people to people in the conference. You can see of how it works below.

Dependencies

Use pip to install dependencies

pip install -r requirements.txt

Please see Stackoverflow if you have a problem installing or-tools on MacOS. You can use pip to install protobuf before installing or-tools

pip install protobuf==3.0.0b4
pip install ortools

for Python 3.6,

pip install --user --upgrade ortools

Citations

If you use Paper-Reviewer Matcher in your work or conference, please cite us as follows

@misc{achakulvisut2018,
    author = {Achakulvisut, Titipat and Acuna, Daniel E. and Kording, Konrad},
    title = {Paper-Reviewer Matcher},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/titipata/paper-reviewer-matcher}},
    commit = {9d346ee008e2789d34034c2b330b6ba483537674}
}

Members

Owner
Titipat Achakulvisut
Science of Science & Applied NLP | Mahidol University | Former @KordingLab, University of Pennsylvania, and intern @allenai, organizer/co-founder of neuromatch.
Titipat Achakulvisut
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023