code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Overview

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

This repository contains PyTorch evaluation code, training code and pretrained models for AttentiveNAS.

For details see AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling by Dilin Wang, Meng Li, Chengyue Gong and Vikas Chandra.

If you find this project useful in your research, please consider cite:

@article{wang2020attentivenas,
  title={AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling},
  author={Wang, Dilin and Li, Meng and Gong, Chengyue and Chandra, Vikas},
  journal={arXiv preprint arXiv:2011.09011},
  year={2020}
}

Pretrained models and data

Download our pretrained AttentiveNAS models and a (sub-network, FLOPs) lookup table from Google Drive and put them under folder ./attentive_nas_data

Evaluation

To evaluate our pre-trained AttentiveNAS models, from AttentiveNAS-A0 to A6, on ImageNet val with a single GPU, run:

python test_attentive_nas.py --config-file ./configs/eval_attentive_nas_models.yml --model a[0-6]

Expected results:

Name MFLOPs Top-1 (%)
AttentiveNAS-A0 203 77.3
AttentiveNAS-A1 279 78.4
AttentiveNAS-A2 317 78.8
AttentiveNAS-A3 357 79.1
AttentiveNAS-A4 444 79.8
AttentiveNAS-A5 491 80.1
AttentiveNAS-A6 709 80.7

Training

To train our AttentiveNAS models from scratch, run

python train_supernet.py --config-file configs/train_attentive_nas_models.yml --machine-rank ${machine_rank} --num-machines ${num_machines} --dist-url ${dist_url}

We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU; all training hyper-parameters are specified in train_attentive_nas_models.yml.

License

The majority of AttentiveNAS is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Once For All is licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Owner
Facebook Research
Facebook Research
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkartโ€™s branding and marketing.

Harshith VH 1 Oct 29, 2021
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
โšก Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes โšก

Translations ๐Ÿ‡ฉ๐Ÿ‡ช DE ๐Ÿ‡ซ๐Ÿ‡ท FR ๐Ÿ‡ญ๐Ÿ‡บ HU ๐Ÿ‡ฎ๐Ÿ‡ฉ ID ๐Ÿ‡ฎ๐Ÿ‡น IT ๐Ÿ‡ณ๐Ÿ‡ฑ NL ๐Ÿ‡ง๐Ÿ‡ท PT-BR ๐Ÿ‡ท๐Ÿ‡บ RU ๐Ÿ‡จ๐Ÿ‡ณ ZH โžก๏ธ Documentation | Discord | Installation Guide โฌ…๏ธ Fully autom

11.2k Jan 05, 2023
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022