BiNE: Bipartite Network Embedding

Related tags

Text Data & NLPBiNE
Overview

BiNE: Bipartite Network Embedding

This repository contains the demo code of the paper:

BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiangnan He & Aoying Zhou

which has been accepted by SIGIR2018.

Note: Any problems, you can contact me at [email protected]. Through email, you will get my rapid response.

Environment settings

  • python==2.7.11
  • numpy==1.13.3
  • sklearn==0.17.1
  • networkx==1.11
  • datasketch==1.2.5
  • scipy==0.17.0
  • six==1.10.0

Basic Usage

Main Parameters:

Input graph path. Defult is '../data/rating_train.dat' (--train-data)
Test dataset path. Default is '../data/rating_test.dat' (--test-data)
Name of model. Default is 'default' (--model-name)
Number of dimensions. Default is 128 (--d)
Number of negative samples. Default is 4 (--ns)
Size of window. Default is 5 (--ws)
Trade-off parameter $\alpha$. Default is 0.01 (--alpha)
Trade-off parameter $\beta$. Default is 0.01 (--beta)
Trade-off parameter $\gamma$. Default is 0.1 (--gamma)
Learning rate $\lambda$. Default is 0.01 (--lam)
Maximal iterations. Default is 50 (--max-iters)
Maximal walks per vertex. Default is 32 (--maxT)
Minimal walks per vertex. Default is 1 (--minT)
Walk stopping probability. Default is 0.15 (--p)
Calculate the recommendation metrics. Default is 0 (--rec)
Calculate the link prediction. Default is 0 (--lip)
File of training data for LR. Default is '../data/wiki/case_train.dat' (--case-train)
File of testing data for LR. Default is '../data/wiki/case_test.dat' (--case-test)
File of embedding vectors of U. Default is '../data/vectors_u.dat' (--vectors-u)
File of embedding vectors of V. Default is '../data/vectors_v.dat' (--vectors-v)
For large bipartite, 1 do not generate homogeneous graph file; 2 do not generate homogeneous graph. Default is 0 (--large)
Mertics of centrality. Default is 'hits', options: 'hits' and 'degree_centrality' (--mode)

Usage

We provide two processed dataset:

  • DBLP (for recommendation). It contains:

    • A training dataset ./data/dblp/rating_train.dat
    • A testing dataset ./data/dblp/rating_test.dat
  • Wikipedia (for link prediction). It contains:

    • A training dataset ./data/wiki/rating_train.dat
    • A testing dataset ./data/wiki/rating_test.dat
  • Each line is a instance: userID (begin with 'u')\titemID (begin with 'i') \t weight\n

    For example: u0\ti0\t1

Please run the './model/train.py'

cd model
python train.py --train-data ../data/dblp/rating_train.dat --test-data ../data/dblp/rating_test.dat --lam 0.025 --max-iter 100 --model-name dblp --rec 1 --large 2 --vectors-u ../data/dblp/vectors_u.dat --vectors-v ../data/dblp/vectors_v.dat

The embedding vectors of nodes are saved in file '/model-name/vectors_u.dat' and '/model-name/vectors_v.dat', respectively.

Example

Recommendation

Run

cd model
python train.py --train-data ../data/dblp/rating_train.dat --test-data ../data/dblp/rating_test.dat --lam 0.025 --max-iter 100 --model-name dblp --rec 1 --large 2 --vectors-u ../data/dblp/vectors_u.dat --vectors-v ../data/dblp/vectors_v.dat

Output (training process)

======== experiment settings =========
alpha : 0.0100, beta : 0.0100, gamma : 0.1000, lam : 0.0250, p : 0.1500, ws : 5, ns : 4, maxT :  32, minT : 1, max_iter : 100
========== processing data ===========
constructing graph....
number of nodes: 6001
walking...
walking...ok
number of nodes: 1177
walking...
walking...ok
getting context and negative samples....
negative samples is ok.....
context...
context...ok
context...
context...ok
============== training ==============
[*************************************************************************************************** ]100.00%

Output (testing process)

============== testing ===============
recommendation metrics: F1 : 0.1132, MAP : 0.2041, MRR : 0.3331, NDCG : 0.2609

Link Prediction

Run

cd model
python train.py --train-data ../data/wiki/rating_train.dat --test-data ../data/wiki/rating_test.dat --lam 0.01 --max-iter 100 --model-name wiki --lip 1 --large 2 --gamma 1 --vectors-u ../data/wiki/vectors_u.dat --vectors-v ../data/wiki/vectors_v.dat --case-train ../data/wiki/case_train.dat --case-test ../data/wiki/case_test.dat

Output (training process)

======== experiment settings =========
alpha : 0.0100, beta : 0.0100, gamma : 1.0000, lam : 0.0100, p : 0.1500, ws : 5, ns : 4, maxT :  32, minT : 1, max_iter : 100, d : 128
========== processing data ===========
constructing graph....
number of nodes: 15000
walking...
walking...ok
number of nodes: 2529
walking...
walking...ok
getting context and negative samples....
negative samples is ok.....
context...
context...ok
context...
context...ok
============== training ==============
[*************************************************************************************************** ]100.00%

Output (testing process)

============== testing ===============
link prediction metrics: AUC_ROC : 0.9468, AUC_PR : 0.9614
Owner
leihuichen
student
leihuichen
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

Ragesh Hajela 0 Feb 08, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022