This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Overview

Ditch the Gold Standard: Re-evaluating Conversational Question Answering

This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering.

Overview

In this work, we conduct the first large-scale human evaluation of state-of-the-art conversational QA systems. In our evaluation, human annotators chat with conversational QA models about passages from the QuAC development set, and after that the annotators judge the correctness of model answers. We release the human annotated dataset in the following section.

We also identify a critical issue with the current automatic evaluation, which pre-collectes human-human conversations and uses ground-truth answers as conversational history (differences between different evaluations are shown in the following figure). By comparison, we find that the automatic evaluation does not always agree with the human evaluation. We propose a new evaluation protocol that is based on predicted history and question rewriting. Our experiments show that the new protocol better reflects real-world performance compared to the original automatic evaluation. We also provide the new evaluation protocol code in the following.

Different evaluation protocols

Human Evaluation Dataset

You can download the human annotation dataset from data/human_annotation_data.json. The json file contains one data field data, which is a list of conversations. Each conversation contains the following fields:

  • model_name: The model evaluated. One of bert4quac, graphflow, ham, excord.
  • context: The passage used in this conversation.
  • dialog_id: The ID from the original QuAC dataset.
  • qas: The conversation, which contains a list of QA pairs. Each QA pair has the following fields:
    • turn_id: The number of turn.
    • question: The question from the human annotator.
    • answer: The answer from the model.
    • valid: Whether the question is valid (annotated by our human annotator).
    • answerable: Whether the question is answerable (annotated by our human annotator).
    • correct: Whether the model's answer is correct (annotated by our human annotator).

Automatic model evaluation interface

We provide a convenient interface to test model performance on a few evaluation protocols compared in our paper, including Auto-Pred, Auto-Replace and our proposed evaluation protocol, Auto-Rewrite, which better demonstrates models' performance in human-model conversations. Please refer to our paper for more details. Following is a figure describing how Auto-Rewrite works.

Auto-rewrite

To use our evaluation interface on your own model, follow the steps:

  • Step 1: Download the QuAC dataset.

  • Step 2: Install allennlp, allennlp_models, ncr.replace_corefs through pip if you would like to use Auto-Rewrite.

  • Step 3: Download the CANARD dataset and set --canard_path if you would like to use Auto-Replace.

  • Step 4: Write a model interface following the template interface.py. Explanations to each function are provided through in-line comments. Make sure to import all your model dependencies at the top.

  • Step 5: Add the model to the evaluation script run_quac_eval.py. Changes that are need to be made are marked with #TODO.

  • Step 6: Run evaluation script. See run.sh for reference. Explanations of all arguments are provided in run_quac_eval.py. Make sure to turn on only one of --pred, --rewrite or --replace.

Citation

@article{li2021ditch,
   title={Ditch the Gold Standard: Re-evaluating Conversational Question Answering},
   author={Li, Huihan and Gao, Tianyu and Goenka, Manan and Chen, Danqi},
   journal={arXiv preprint arXiv:2112.08812},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Matthew Colbrook 1 Apr 08, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022