Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

Overview

THESIS_CAIRONE_FIORENTINO

Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

GENERATE TOKEN SLACK

NB: REMEMBER TO REGENERATE SLACK TOKENS AND CHANNEL ID IF ARE DISABLE (SEE THESIS PDF)

  • Go on your Slack App ( App Slack )-> select your app or create new -> Settings -> Install App -> (regenerate two tokens) -> Copy Tokens in actions/Constants.py and credentials.yml files.

RASA - LOCAL MODE

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.8.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • rasa init if you want to create new project

MORE INFO: See this video: link

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
  • After run server rasa:

  • rasa run --connector slack --model {model_name} --debug

  • In an other prompr run server rasa ACTIONS:

  • rasa run actions --action actions --debug

  • If you want,to test locally the intent classification, run in Anaconda console:

    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name}
    • rasa shell --model {model_name}

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

RASA X

Components Installation

  • Writing in Anaconda console this command:
    • conda create --name venv python==3.9.0
    • conda activate venv
    • conda install ujson tensorflow
    • pip install rasa[spacy] for SPACY configuration
    • pip install rasa[trasformers] for BERT configuration
    • pip install --upgrade pip==20.0.1 pip3 install rasa-x --extra-index-url https://pypi.rasa.com/simple pip install --upgrade pip

Code Execution

  • First, in TESI_POLI_POBOT directory do the training in anaconda console with venv activate:

    • set PYTHONUTF8=1
    • rasa x --connector slack --config configs/{file_cofiguration}.yml
  • In an other prompt run server rasa ACTIONS:

  • rasa run actions --action actions --debug

Rasa Bot - Slack Connection

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 5005 to create a tunnel for localhost:5005 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

To Connect also the ACTION Server Rasa:

  • ngrok http 5055 to create a tunnel for localhost:5055
  • In endpoints.yml modify url of action_endpoint: {address}/webhook

To Connect also the ACTION Server Rasa X:

  • ngrok http 5055 to create a tunnel for localhost:5002
  • In credentials.yml modify url of rasa: {address}/api

RASA - DOCKER MODE

Code Execution

If is the first time, run this commands:

docker volume create db-volume
docker-compose up -d
docker-compose down
docker-compose up -d
python rasa_x_commands.py create --update admin me <password_rasa_server> (i.e. password)
docker-compose down
docker-compose up -d

Otherwise, in TESI_POLI_POBOT directory in console run only this command:

  • docker-compose up -d

Rasa Bot - Slack Connection

After all container is in running mode, in web browser go in `http:://localhost:80' and insert the password choose the first time. (i.e. password)

If rasa x server not contain NLU data (possible first time) you can upload the file directly using interface of rasa x server in Training -> NLU data / Stories / Rules / Configuration (copy and paste the content of config choose in TESI_POLI_POBOT directory)

If you want to connect to slack:

  • after training and running the server in Anaconda console (see ## Execution of code paragraph):
    • in BOT_RASA/ngrok directory run this command (in console prompt):
      • ngrok http 80 to create a tunnel for localhost:80 address:
      • select the forwarding address choose to ngrok ({address} = http://<number_code>.ngrok.io)
      • in Slack App link save the address (selecting in Features menu):
        • Interactivity & Shortcut > Request URL: ({address}/core/webhooks/slack/webhook) > Save Changes
        • OAuth & Permissions > Redirect URLs > Add : ({address}/core/webhooks/slack/webhook) > Save URLs
        • Event Subscriptions > Enable Events (Request URL) > Change: ({address}/core/webhooks/slack/webhook) > Save Changes
      • expired time of ngrok address: 2 hours. (when we will use a public address, ngrok will become USELESS)
  • tokens bot save as environment variable in PC server (for security issue)
  • Slack bot: link

RASA - TEST DATA

Test stories in tests directory

  • if you want tests stories with cross-validation:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test --config configs/{file_cofiguration}.yml --cross-validation --runs {time_runs} --folds {num_folds} --out {dir_out} --model {model_name}

Test NLU data

  • if you want test only the NLU data splitted:

    • rasa train nlu --nlu train_test_split/training_data.yml --config configs/{file_cofiguration}.yml --fixed-model-name ./models_NLU/{model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model ./models_NLU/{model_name}
  • if you want test only the NLU data totally:

    • rasa train nlu --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test nlu --nlu train_test_split/test_data.yml --out {dir_out} --model {model_name}

Test CORE data

  • if you want test only the CORE data:
    • rasa train --config configs/{file_cofiguration}.yml --fixed-model-name {model_name} (if model does not exist)
    • rasa test core --stories tests/test_stories.yml --out {dir_out} --model {model_name}
Owner
cairone_fiorentino97
cairone_fiorentino97
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022