Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Related tags

Deep LearningATVGnet
Overview

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu.

University of Rochester.

Table of Contents

  1. Introduction
  2. Citation
  3. Running
  4. Model
  5. Results
  6. Disclaimer and known issues

Introduction

This repository contains the original models (AT-net, VG-net) described in the paper Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss. The demo video is avaliable at https://youtu.be/eH7h_bDRX2Q. This code can be applied directly in LRW and GRID. The outputs from the model are visualized here: the first one is the synthesized landmark from ATnet, the rest of them are attention, motion map and final results from VGnet.

model model

Citation

If you use any codes, models or the ideas from this repo in your research, please cite:

@inproceedings{chen2019hierarchical,
  title={Hierarchical cross-modal talking face generation with dynamic pixel-wise loss},
  author={Chen, Lele and Maddox, Ross K and Duan, Zhiyao and Xu, Chenliang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={7832--7841},
  year={2019}
}

Running

  1. This code is tested under Python 2.7. The model we provided is trained on LRW. However, it works fine on GRID,VOXCELB and other datasets. You can directly compare this model on other dataset with your own model. We treat this as fair comparison.

  2. Pytorch environment:Pytorch 0.4.1. (conda install pytorch=0.4.1 torchvision cuda90 -c pytorch)

  3. Install requirements.txt (pip install -r requirement.txt)

  4. Download the pretrained ATnet and VGnet weights at google drive. Put the weights under model folder.

  5. Run the demo code: python demo.py

    • -device_ids: gpu id
    • -cuda: using cuda or not
    • -vg_model: pretrained VGnet weight
    • -at_model: pretrained ATnet weight
    • -lstm: use lstm or not
    • -p: input example image
    • -i: input audio file
    • -lstm: use lstm or not
    • -sample_dir: folder to save the outputs
    • ...
  6. Download and unzip the training data from LRW

  7. Preprocess the data (Extract landmark and crop the image by dlib).

  8. Train the ATnet model: python atnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -lstm: use lstm or not
    • -sample_dir: folder to save visualized images during training
    • ...
  9. Test the model: python atnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • -lstm: use lstm or not
    • ...
  10. Train the VGnet: python vgnet.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_dir: folder to save weights
    • -sample_dir: folder to save visualized images during training
    • ...
  11. Test the VGnet: python vgnet_test.py

    • -device_ids: gpu id
    • -batch_size: batch size
    • -model_name: pretrained weights
    • -sample_dir: folder to save the outputs
    • ...

Model

  1. Overall ATVGnet model

  2. Regresssion based discriminator network

    model

Results

  1. Result visualization on different datasets:

    visualization

  2. Reuslt compared with other SOTA methods:

    visualization

  3. The studies on image robustness respective with landmark accuracy:

    visualization

  4. Quantitative results:

    visualization

Disclaimer and known issues

  1. These codes are implmented in Pytorch.
  2. In this paper, we train LRW and GRID seperately.
  3. The model are sensitive to input images. Please use the correct preprocessing code.
  4. I didn't finish the data processing code yet. I will release it soon. But you can try the model and replace with your own image.
  5. If you want to train these models using this version of pytorch without modifications, please notice that:
    • You need at lest 12 GB GPU memory.
    • There might be some other untested issues.
  6. There is another intresting and useful research on audio to landmark genration. Please check it out at https://github.com/eeskimez/Talking-Face-Landmarks-from-Speech.

Todos

  • Release training data

License

MIT

Owner
Lele Chen
I am a Ph.D candidate in University of Rochester supervised by Prof. Chenling Xu.
Lele Chen
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023