Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

Related tags

Deep Learningblobgan
Overview

BlobGAN: Spatially Disentangled Scene Representations
Official PyTorch Implementation

Paper | Project Page | Video | Interactive Demo Open in Colab

BlobGAN.mp4

This repository contains:

  • 🚂 Pre-trained BlobGAN models on three datasets: bedrooms, conference rooms, and a combination of kitchens, living rooms, and dining rooms
  • 💻 Code based on PyTorch Lightning and Hydra 🐍 which fully supports CPU, single GPU, or multi GPU/node training and inference

We also provide an 📓 interactive demo notebook to help get started using our model. Download this notebook and run it on your own Python environment, or test it out on Colab. You can:

  • 🖌️ ️ Generate and edit realistic images with an interactive UI
  • 📹 Create animated videos showing off your edited scenes

And, coming soon!

  • 📸 Upload your own image and convert it into blobs!
  • 🧬 Programmatically modify images and reproduce results from our paper

Setup

Run the commands below one at a time to download the latest version of the BlobGAN code, create a Conda environment, and install necessary packages and utilities.

git clone https://github.com/dave-epstein/blobgan.git
mkdir -p blobgan/logs/wandb
conda create -n blobgan python=3.9
conda activate blobgan
conda install pytorch=1.11.0 torchvision=0.12.0 torchaudio cudatoolkit=11.3 -c pytorch
conda install cudatoolkit-dev=11.3 -c conda-forge
pip install tqdm==4.64.0 hydra-core==1.1.2 omegaconf==2.1.2 clean-fid==0.1.23 wandb==0.12.11 ipdb==0.13.9 lpips==0.1.4 einops==0.4.1 inputimeout==1.0.4 pytorch-lightning==1.5.10 matplotlib==3.5.2 mpl_interactions[jupyter]==0.21.0
wget -q --show-progress https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip
sudo unzip -q ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force

Running pretrained models

See scripts/load_model.py for an example of how to load a pre-trained model (using the provided load_model function, which can be called from elsewhere) and generate images with it. You can also run the file from the command line to generate images and save them to disk. For example:

python scripts/load_model.py --model_name bed --dl_dir models --save_dir out --n_imgs 32 --save_blobs --label_blobs

See the command's help for more details and options: scripts/load_model.py --help

Training your own model

Before training your model, you'll need to modify src/configs/experiments/local.yaml to include your WandB information and machine-specific configuration (such as path to data -- dataset.path or dataset.basepath -- and number of GPUs trainer.gpus). To turn off logging entirely, pass logger=false, or to only log to disk but not write to server, pass wandb.offline=true. Our code currently only supports WandB logging.

Here's an example command which will train a model on LSUN bedrooms. We list the configuration modules to load for this experiment (blobgan, local, jitter) and then specify any other options as we desire. For example, if we wanted to train a model without jitter, we could just remove that module from the experiments array.

python src/run.py +experiment=[blobgan,local,jitter] wandb.name='10-blob BlobGAN on bedrooms'

In some shells, you may need to add extra quotes around some of these options to prevent them from being parsed immediately on the command line.

Train on the LSUN category of your choice by passing in dataset.category, e.g. dataset.category=church. Tackle multiple categories at once with dataset=multilsun and dataset.categories=[kitchen,bedroom].

You can also train on any collection of images by selecting dataset=imagefolder and passing in the path. The code expects at least a subfolder named train and optional subfolders named validate and test. The below command also illustrates how to set arbitrary options using Hydra syntax, such as turning off FID logging or changing dataloader batch size:

python src/run.py +experiment=[blobgan,local,jitter] wandb.name='20-blob BlobGAN on Places' dataset.dataloader.batch_size=24 +model.log_fid_every_epoch=false dataset=imagefolder +dataset.path=/path/to/places/ model.n_features=20

Other parameters of interest are likely trainer.log_every_n_steps and model.log_images_every_n_steps which control frequency of logging scalars and images, and checkpoint.every_n_train_steps and checkpoint.save_top_k which dictate checkpoint saving frequency and decide how many most recent checkpoints to keep (-1 means keep everything).

Citation

If our code or models aided your research, please cite our paper:

@misc{epstein2022blobgan,
      title={BlobGAN: Spatially Disentangled Scene Representations},
      author={Dave Epstein and Taesung Park and Richard Zhang and Eli Shechtman and Alexei A. Efros},
      year={2022},
      eprint={2205.02837},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}		

Code acknowledgments

This repository is built on top of rosinality's excellent PyTorch re-implementation of StyleGAN2 and Bill Peebles' GANgealing codebase.

Owner
PhD student at UC Berkeley
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023