Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Related tags

Deep Learninguclser20
Overview

Unsupervised Contrastive Learning of
Sound Event Representations

This repository contains the code for the following paper. If you use this code or part of it, please cite:

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E. O'Connor, Xavier Serra, "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

arXiv slides poster blog post video

We propose to learn sound event representations using the proxy task of contrasting differently augmented views of sound events, inspired by SimCLR [1]. The different views are computed by:

  • sampling TF patches at random within every input clip,
  • mixing resulting patches with unrelated background clips (mix-back), and
  • other data augmentations (DAs) (RRC, compression, noise addition, SpecAugment [2]).

Our proposed system is illustrated in the figure.

system

Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels. Please check our paper for more details, or have a quicker look at our slide deck, poster, blog post, or video presentation (see links above).

This repository contains the framework that we used for our paper. It comprises the basic stages to learn an audio representation via unsupervised contrastive learning, and then evaluate the representation via supervised sound event classifcation. The system is implemented in PyTorch.

Dependencies

This framework is tested on Ubuntu 18.04 using a conda environment. To duplicate the conda environment:

conda create --name <envname> --file spec-file.txt

Directories and files

FSDnoisy18k/ includes folders to locate the FSDnoisy18k dataset and a FSDnoisy18k.py to load the dataset (train, val, test), including the data loader for contrastive and supervised training, applying transforms or mix-back when appropriate
config/ includes *.yaml files defining parameters for the different training modes
da/ contains data augmentation code, including augmentations mentioned in our paper and more
extract/ contains feature extraction code. Computes an .hdf5 file containing log-mel spectrograms and associated labels for a given subset of data
logs/ folder for output logs
models/ contains definitions for the architectures used (ResNet-18, VGG-like and CRNN)
pth/ contains provided pre-trained models for ResNet-18, VGG-like and CRNN
src/ contains functions for training and evaluation in both supervised and unsupervised fashion
main_train.py is the main script
spec-file.txt contains conda environment specs

Usage

(0) Download the dataset

Download FSDnoisy18k [3] from Zenodo through the dataset companion site, unzip it and locate it in a given directory. Fix paths to dataset in ctrl section of *.yaml. It can be useful to have a look at the different training sets of FSDnoisy18k: a larger set of noisy labels and a small set of clean data [3]. We use them for training/validation in different ways.

(1) Prepare the dataset

Create an .hdf5 file containing log-mel spectrograms and associated labels for each subset of data:

python extract/wav2spec.py -m test -s config/params_unsupervised_cl.yaml

Use -m with train, val or test to extract features from each subset. All the extraction parameters are listed in params_unsupervised_cl.yaml. Fix path to .hdf5 files in ctrl section of *.yaml.

(2) Run experiment

Our paper comprises three training modes. For convenience, we provide yaml files defining the setup for each of them.

  1. Unsupervised contrastive representation learning by comparing differently augmented views of sound events. The outcome of this stage is a trained encoder to produce low-dimensional representations. Trained encoders are saved under results_models/ using a folder name based on the string experiment_name in the corresponding yaml (make sure to change it).
CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_unsupervised_cl.yaml &> logs/output_unsup_cl.out
  1. Evaluation of the representation using a previously trained encoder. Here, we do supervised learning by minimizing cross entropy loss without data agumentation. Currently, we load the provided pre-trained models sitting in pth/ (you can change this in main_train.py, search for select model). We follow two evaluation methods:

    • Linear Evaluation: train an additional linear classifier on top of the pre-trained unsupervised embeddings.

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_lineval.yaml &> logs/output_lineval.out
      
    • End-to-end Fine Tuning: fine-tune entire model on two relevant downstream tasks after initializing with pre-trained weights. The two downstream tasks are:

      • training on the larger set of noisy labels and validate on train_clean. This is chosen by selecting train_on_clean: 0 in the yaml.
      • training on the small set of clean data (allowing 15% for validation). This is chosen by selecting train_on_clean: 1 in the yaml.

      After choosing the training set for the downstream task, run:

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_finetune.yaml &> logs/output_finetune.out
      

The setup in the yaml files should provide the best results reported in our paper. JFYI, the main flags that determine the training mode are downstream, lin_eval and method in the corresponding yaml (they are already adequately set in each yaml).

(3) See results:

Check the logs/*.out for printed results at the end. Main evaluation metric is balanced (macro) top-1 accuracy. Trained models are saved under results_models/models* and some metrics are saved under results_models/metrics*.

Model Zoo

We provide pre-trained encoders as described in our paper, for ResNet-18, VGG-like and CRNN architectures. See pth/ folder. Note that better encoders could likely be obtained through a more exhaustive exploration of the data augmentation compositions, thus defining a more challenging proxy task. Also, we trained on FSDnoisy18k due to our limited compute resources at the time, yet this framework can be directly applied to other larger datasets such as FSD50K or AudioSet.

Citation

@inproceedings{fonseca2021unsupervised,
  title={Unsupervised Contrastive Learning of Sound Event Representations},
  author={Fonseca, Eduardo and Ortego, Diego and McGuinness, Kevin and O'Connor, Noel E. and Serra, Xavier},
  booktitle={2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2021},
  organization={IEEE}
}

Contact

You are welcome to contact [email protected] should you have any question/suggestion. You can also create an issue.

Acknowledgment

This work is a collaboration between the MTG-UPF and Dublin City University's Insight Centre. This work is partially supported by Science Foundation Ireland (SFI) under grant number SFI/15/SIRG/3283 and by the Young European Research University Network under a 2020 mobility award. Eduardo Fonseca is partially supported by a Google Faculty Research Award 2018. The authors are grateful for the GPUs donated by NVIDIA.

References

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in Int. Conf. on Mach. Learn. (ICML), 2020

[2] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

[3] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, X. Serra, "Learning Sound Event Classifiers from Web Audio with Noisy Labels", In proceedings of ICASSP 2019, Brighton, UK

Owner
Eduardo Fonseca
Returning research intern at Google Research | PhD candidate at Music Technology Group, Universitat Pompeu Fabra
Eduardo Fonseca
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023