Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Related tags

Deep Learninguclser20
Overview

Unsupervised Contrastive Learning of
Sound Event Representations

This repository contains the code for the following paper. If you use this code or part of it, please cite:

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E. O'Connor, Xavier Serra, "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

arXiv slides poster blog post video

We propose to learn sound event representations using the proxy task of contrasting differently augmented views of sound events, inspired by SimCLR [1]. The different views are computed by:

  • sampling TF patches at random within every input clip,
  • mixing resulting patches with unrelated background clips (mix-back), and
  • other data augmentations (DAs) (RRC, compression, noise addition, SpecAugment [2]).

Our proposed system is illustrated in the figure.

system

Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels. Please check our paper for more details, or have a quicker look at our slide deck, poster, blog post, or video presentation (see links above).

This repository contains the framework that we used for our paper. It comprises the basic stages to learn an audio representation via unsupervised contrastive learning, and then evaluate the representation via supervised sound event classifcation. The system is implemented in PyTorch.

Dependencies

This framework is tested on Ubuntu 18.04 using a conda environment. To duplicate the conda environment:

conda create --name <envname> --file spec-file.txt

Directories and files

FSDnoisy18k/ includes folders to locate the FSDnoisy18k dataset and a FSDnoisy18k.py to load the dataset (train, val, test), including the data loader for contrastive and supervised training, applying transforms or mix-back when appropriate
config/ includes *.yaml files defining parameters for the different training modes
da/ contains data augmentation code, including augmentations mentioned in our paper and more
extract/ contains feature extraction code. Computes an .hdf5 file containing log-mel spectrograms and associated labels for a given subset of data
logs/ folder for output logs
models/ contains definitions for the architectures used (ResNet-18, VGG-like and CRNN)
pth/ contains provided pre-trained models for ResNet-18, VGG-like and CRNN
src/ contains functions for training and evaluation in both supervised and unsupervised fashion
main_train.py is the main script
spec-file.txt contains conda environment specs

Usage

(0) Download the dataset

Download FSDnoisy18k [3] from Zenodo through the dataset companion site, unzip it and locate it in a given directory. Fix paths to dataset in ctrl section of *.yaml. It can be useful to have a look at the different training sets of FSDnoisy18k: a larger set of noisy labels and a small set of clean data [3]. We use them for training/validation in different ways.

(1) Prepare the dataset

Create an .hdf5 file containing log-mel spectrograms and associated labels for each subset of data:

python extract/wav2spec.py -m test -s config/params_unsupervised_cl.yaml

Use -m with train, val or test to extract features from each subset. All the extraction parameters are listed in params_unsupervised_cl.yaml. Fix path to .hdf5 files in ctrl section of *.yaml.

(2) Run experiment

Our paper comprises three training modes. For convenience, we provide yaml files defining the setup for each of them.

  1. Unsupervised contrastive representation learning by comparing differently augmented views of sound events. The outcome of this stage is a trained encoder to produce low-dimensional representations. Trained encoders are saved under results_models/ using a folder name based on the string experiment_name in the corresponding yaml (make sure to change it).
CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_unsupervised_cl.yaml &> logs/output_unsup_cl.out
  1. Evaluation of the representation using a previously trained encoder. Here, we do supervised learning by minimizing cross entropy loss without data agumentation. Currently, we load the provided pre-trained models sitting in pth/ (you can change this in main_train.py, search for select model). We follow two evaluation methods:

    • Linear Evaluation: train an additional linear classifier on top of the pre-trained unsupervised embeddings.

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_lineval.yaml &> logs/output_lineval.out
      
    • End-to-end Fine Tuning: fine-tune entire model on two relevant downstream tasks after initializing with pre-trained weights. The two downstream tasks are:

      • training on the larger set of noisy labels and validate on train_clean. This is chosen by selecting train_on_clean: 0 in the yaml.
      • training on the small set of clean data (allowing 15% for validation). This is chosen by selecting train_on_clean: 1 in the yaml.

      After choosing the training set for the downstream task, run:

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_finetune.yaml &> logs/output_finetune.out
      

The setup in the yaml files should provide the best results reported in our paper. JFYI, the main flags that determine the training mode are downstream, lin_eval and method in the corresponding yaml (they are already adequately set in each yaml).

(3) See results:

Check the logs/*.out for printed results at the end. Main evaluation metric is balanced (macro) top-1 accuracy. Trained models are saved under results_models/models* and some metrics are saved under results_models/metrics*.

Model Zoo

We provide pre-trained encoders as described in our paper, for ResNet-18, VGG-like and CRNN architectures. See pth/ folder. Note that better encoders could likely be obtained through a more exhaustive exploration of the data augmentation compositions, thus defining a more challenging proxy task. Also, we trained on FSDnoisy18k due to our limited compute resources at the time, yet this framework can be directly applied to other larger datasets such as FSD50K or AudioSet.

Citation

@inproceedings{fonseca2021unsupervised,
  title={Unsupervised Contrastive Learning of Sound Event Representations},
  author={Fonseca, Eduardo and Ortego, Diego and McGuinness, Kevin and O'Connor, Noel E. and Serra, Xavier},
  booktitle={2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2021},
  organization={IEEE}
}

Contact

You are welcome to contact [email protected] should you have any question/suggestion. You can also create an issue.

Acknowledgment

This work is a collaboration between the MTG-UPF and Dublin City University's Insight Centre. This work is partially supported by Science Foundation Ireland (SFI) under grant number SFI/15/SIRG/3283 and by the Young European Research University Network under a 2020 mobility award. Eduardo Fonseca is partially supported by a Google Faculty Research Award 2018. The authors are grateful for the GPUs donated by NVIDIA.

References

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in Int. Conf. on Mach. Learn. (ICML), 2020

[2] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

[3] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, X. Serra, "Learning Sound Event Classifiers from Web Audio with Noisy Labels", In proceedings of ICASSP 2019, Brighton, UK

Owner
Eduardo Fonseca
Returning research intern at Google Research | PhD candidate at Music Technology Group, Universitat Pompeu Fabra
Eduardo Fonseca
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022